• ベストアンサー
  • 困ってます

ベクトルの問題なのですが

四角形ABCDは平行四辺形ではなく、かつAB=BCである。 辺AB,CDの中点をそれぞれP,Q対角線AC.BDの中点をそれぞれM,Nとす。 PQ→とMN→をAD→、BC→であらわすにはどうしたらいいでしょうか>< あと平行四辺形でなくAB=BCってどんな四角形かも想像できないので教えてくださると嬉しいです。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • postro
  • ベストアンサー率43% (156/357)

>あと平行四辺形でなくAB=BCってどんな四角形かも想像できないので教えてくださると嬉しいです。 たとえば各座標が A(1,√3) B(0,0) C(2,0) D(3,1) は AB=BC=2 の平行四辺形でない四角形です。 AD↑=d↑ BC↑=c↑ BA↑=a↑ とすると、 BD↑=a↑+d↑ BQ↑=(1/2)(BD↑+c↑)=(1/2)(a↑+d↑+c↑) PQ↑=BQ↑-(12)a↑=(1/2)(d↑+c↑) BM↑=(1/2)(a↑+c↑) BN↑=(1/2)BD↑=(1/2)(a↑+d↑) MN↑=BN↑-BM↑=(1/2)(d↑-c↑)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトルの演習問題について

    次の問題がわかりません。 ご教授ください。 平行四辺形ABCDの内部の点Pが対角線BDを 4:5に内分している。 このとき、辺ABの中点をM,辺BCの中点をN,直線APと直線MNの交点をQとし, AB=2,AD=1,∠DAB=(π/3)のとき,    (1) ベクトル(MQ)=□ベクトル(MN)     (2) ベクトル(AQ)の大きさ=ルート(□) である。(1)の□は一ケタの整数、(2)の□は2ケタの整数です。 ベクトルの問題で式がうまく表記できなくて申し訳ないです。。 宜しくお願いします。

  • 平行四辺形 ベクトル

    解き方がまったくわかりません。この問題です。 平行四辺形ABCDにおいて、辺AB、BC、CD、DAの中点をそれぞれP、Q、R、Sとし、対角線AC、BDの交点をOとする。 これら9個の点を始点または終点とするベクトルについて ABの長さが2、ADの長さが4、角ABC=60度のとき、ベクトルOA、OBの大きさを求めよ。 解説をお願いします。

  • ベクトル問題!!

    平行四辺形ABCDがある。辺BCを1:2に内分する点をP、辺CDを(1-t):tに内分する点をQとし、線分PQと対角線ACとの交点をRとする。「AB」(ABベクトル)=「a」 「AD」=「b」とおくとき、  「a」、「b]およびtを用いて「PQ」を表すと 「PQ」=(t-□)「a」+□/□「b」である。  という問題なんですが、「PQ」=「AQ」-「AP」となるのは分かるのですが、その計算が答えとどうしても合いません。 ちなみに答えは(t-1)「a」+2/3「b」です。

  • 数学のベクトルの問題ですが…

    平行四辺形ABCDにおいて、辺BCの中点をLとし、線分DLを2:3に内分する点をMとする。また、直線AMと辺CDの交点をNとする。 (1)AM→をAB→、AD→で表せ 答えは、AM→=5/2AB→+5/4AD→ 解き方がわからないので解き方を詳しく教えてください

  • 平面ベクトル

    平行四辺形の問題 平行四辺形ABCDにおいて∠DAB=120°、BC=1、辺ABの中点をM、辺BCを2:1に内分する点をNとする。 (1)ベクトル→MNを→ABと→BCを用いて表せ。 (2)辺ABの長さをxとおく。→AB・→MNをxを用いて表せ。 (3)辺CD上に点Pをとる。点Pを辺CD上で動かしても、→MN・→NPが常に一定の値になるとき、辺ABの長さを求めよ。また、そのときのMN・NPの値を求めよ。 (1)の答:→AB+(4/3)→BC  (2)の答 x~2+(2/3)Xとなりましたが(3)は分かりません。 (1)、(2)含めて宜しくご指導ください。お願いします。

  • 図形

    平行四辺形ABCDがあり、BCの中点をM、CDの中点をN、線分AMとANと対角線BDとの交点そそれぞれPQとする。 線分PQの長さが4cm、線分MNの長さ6cmのとき、三角形MCNと三角形APDの面積の比は? 図がなくてすみません。 どこをどう見て考えていけばいいのでしょうか・・・?

  • ベクトル

    四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) PN=αAB+βAD PQ=γAB+δAD という形になったとすると、Nが直線PQと直線RSの交点であるとき点Nは直線PQ上にあるので α:β=γ:δ が成り立つ これを使って説くことができたのですがなぜこの比が成り立つのかわかりません… 回答お願いします

  • ベクトルの問題 内分点?

    AD平行BCかつBC=2ADである台形ABCDにおいて辺CDを8・1に内分する点 をE、また対角線AC、BDの交点をPとする。 このとき、AEをAB,ADで表せ。 こんにちは、よろしくお願いします。 答えなんですが、 ACベクトル=ABベクトル+2ADベクトル ・・・1 である。 と、ここまでは分るのですが、次の また、AEベクトル=8ADベクトル+ACベクトル/9 とあるのですが、どうやったらこうなるのかが分りません。 辺CDを8・1に内分する点Eに内分の公式使っていると思うのですが。 よろしくおねがいします。

  • 平面ベクトル96[B]

    四角形ABCDは平行四辺形ではないとし、辺AB,BC,CD,DAの中点をそれぞれP,Q,R,Sとする。 (1)線分PRの中点Kと線分QSの中点Lは一致することを示せ。 (2)線分ACの中点Mと線分BDの中点Nを結ぶ直線は点Kを通ることを示せ。

  • 中学生2年生で習う。平行四辺形の面積の問題。

    平行四辺形ABCDで辺AB、BCの中点をそれぞれM,Nとする。三角形DMNの面積は平行四辺形ABCDの面積の何倍か。