• 締切済み
  • すぐに回答を!

平面図形の問題(中学レベル)

こんばんは 次の命題があり、真ならば証明を偽ならば反例を示せ。 (1)平行四辺形ABCDがあり、ABの中点をE、DCの中点をG、AC、BDの交点をFとするとき、EFGは一直線上にある。 (2)台形ABCDがあり、ABの中点をE、DCの中点をG、AC、BDの交点をFとするとき、EFGは一直線上にある。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3

>なぜですか? それが事実だから

共感・感謝の気持ちを伝えよう!

  • 回答No.2

(1)証明 (2)反例

共感・感謝の気持ちを伝えよう!

質問者からの補足

なぜですか?

  • 回答No.1

(1) 平行四辺形の対角線は互いに他を2等分するので、AF:CF=1:1=AE:BE よってBC//EF 同様にFGについても (2) AD<<BCの台形を考えればわかります

共感・感謝の気持ちを伝えよう!

質問者からの補足

それは 証明なのでしょうか? 反例なのでしょうか?

関連するQ&A

  • 平面図形の問題です。教えて下さい。

    平行四辺形ABCDにおいて、2辺CD、ADの中点をそれぞれE、Fとし、線分AEと線分BFの交点をGとする。このとき、三角形EFGと三角形BCEの面積の比を、最も簡単な整数の比であわしなさい。

  • 中学受験の算数の問題です。

    「台形ABCD(左上から時計回りにABCDの順)を点Bを通る4本の直線を引き台形ABCDを5等分しまいた。線分ABと2本の直線との交点を点Aに近いところから反時計回りにE,Fとし、線分DCと2本直線との交点を点Dに近いところからG,Hとします。AB:AD:DC=4:6:5です。このとき、FD:DGを求めなさい。」という問題で補助線を使って考えたのですがなかなか上手くいきません(泣)アドバイスお願いします!

  • 図形の問題(中学生レベル)

    平行四辺形の点Eは辺ABの中点、点Fは辺BC上の点で、辺EFと辺ACは平行である。 また、点Gは対角線ACと線分DEとの交点、点Hは対角線AC上の点で、辺EGとFHは平行である。 このとき、三角形DGCの面積は三角形HFCの面積の何倍か求めよ。 以上の問いの解法を教えてください。

  • 高校数学の問題です。

    解こうとしましたが、最初からできませんでした。 すみませんが、ご回答よろしくお願いします。 四角形ABCDは、すべての内角が180°より小さく、かつAD<BCが成り立つような四角形で、4頂点のいずれをも通らないある直線Lに関する対称移動で同じ四角形に移されるものとする。このとき、点Aを通り直線DCに平行な直線と辺BCとの交点をGとし、直線AGと直線BDとの交点をE、直線CEと辺ABとの交点をFとして、次の問いに答えよ。 (1)四角形ABCDはAD//BCかつAB=DCであるような等脚台形であることを証明せよ。また直線Lはどのような直線であるか。理由をつけて答えよ。 (2)AD/BC=AF/BFが成り立つとき、GB/GCの値を求めよ。 (3)AD/BC=AF/BFが成り立ち、さらに、直線ACに関する対称移動によって、点Dは点Gに移るものとする。 このとき、台形ABCDの外接円の中心を求めよ。

  • 平行四辺形の問題です

    前の続きなのですが・・・。 平行四辺形ABCDがあり辺ABを2:3に分ける点E、線分DEと対角線ACの交点をF 対角線ACの中点をGとします。 平行四辺形ABCDの面積は△AEFの面積の何倍ですか? この問題なのですが、中学生レベルでの考え方と答えをお願いします。

  • 平行四辺形の問題です。

    平行四辺形ABCDがあります。 辺ABを2:3に分ける点E、線分DEと対角形ACの交点をF、ACの中点をGとします。この時次の問いに答えなさい。 (1) AF:FGをもっとも簡単な整数比で答えなさい。 (2) 平行四辺形ABCDの面積は△AEGの面積の何倍ですか?

  • 平面図形の問題です

    問題文は、 三角形ABCの辺AB上の点Mと辺AC上の点Nとを結ぶ直線MN上に、三角形ABCの重心Gがある。MG:GN=3:2のとき (1)AM:MBとAN:NCを求めよ。 (2)Dを辺BCの中点とする。直線MDと直線ACの交点をEとするとき、AC:CEを求めよ。 です。チェバやメネラウスを使いたいのですが・・わかりません。解答お願いします。

  • 平面図形の面積比

    どうしても解けない問題があり、とても困っています。 問題は、以下の通りです。 平行四辺形ABCDがあり、ABの中点をE、BCを5:3に内分する点をF、DEとAFの交点をGとする。 このとき、三角形AEGと四角形EBFGの面積比を求めよ。 一応、参考に画像も添付しています。 どなたか解ける方がいらっしゃいましたら、ぜひお願いします。

  • ベクトルの問題なのですが、教えてください。

    平行四辺形OABCにおいて、線分OAの中点をD、線分OCをα:(1-α)(0<α<1) に内分する点をEとする。さらに直線AEと直線BDの交点をF、直線OFと直線ABの交点 をGとする。このとき直線AEと直線OGが平行になるようにαを定めよ。 考え方と解き方が分かりません。 できれば詳しく解説していただけるとありがたいです。 よろしくお願いします。

  • 中学生のこの問題お教えください。答えもわかっています。

    直線L上に辺ADがある平行四辺形ABCDをかいた。さらに辺CDの中点をE、辺ADを2:1に分ける点をF、対角線ACとBF,BEとの交点をそれぞれH、Iとし、BEの延長と直線Lとの交点をGとする。 問題 HI=3cmのとき、ICの長さを求めなさい。 解答 IC=3.75cm 本日の夜子供に教えたいのでよろしくお願いいたします。