• ベストアンサー
  • 困ってます

平面図形の問題です

問題文は、 三角形ABCの辺AB上の点Mと辺AC上の点Nとを結ぶ直線MN上に、三角形ABCの重心Gがある。MG:GN=3:2のとき (1)AM:MBとAN:NCを求めよ。 (2)Dを辺BCの中点とする。直線MDと直線ACの交点をEとするとき、AC:CEを求めよ。 です。チェバやメネラウスを使いたいのですが・・わかりません。解答お願いします。

noname#95935
noname#95935

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#25799
noname#25799

考え方のヒントのみでいいでしょうか。ベクトル記号は省きますね。 全てを独立なAB,ACで表すことを考えてください。 (1)AM=aAB, AN=bAC ---(イ)のa,b,が分かればいいですよね AG=(2/5)AM+(3/5)AN=(AB+AC)/3 これに(イ)を代入して、さらにAB,ACが独立であることを使ってABとACの係数を比較してください。 (2)AE=cACとしてcを求めればいいですよね。 AE=cAC=AM+dMD ここでdも未知を導入します。 AM=aAB, MD=AD-AM=(1/2)AB+(1/2)AC-aAB (a は(1)から出てきています。) これを計算すると AE=cAC=kAB+lAC (kとlはdを含む式として上の式から出てきます。) で、両者を比較してAB,ACが独立であることを使って、kが0と考えられるのでこれからdが出てきます。あとは芋づる式にcが出てきます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル

    三角形ABCの辺AB上の点Mと辺AC上の点Nとを 結ぶ線分MN上に、三角形ABCの重心Gがある MG:GN=3:2のとき 1.AM:MBとAN:NCを求めよ。 2.Dを辺BCの中点とする。直線MDと直線ACの交点をEとするときAC:CEを求めよ。 という問題の(1)の答えが AG↑に関する2つの式をたてて計算したら AM:MB=5:1,AN:NC=5:4になったんですが あっているでしょうか? どなたか教えてください! あっているでしょうか?

  • 平面図形・・・

    全く分からないです。お力をお貸し下さい。 三角形ABCにおいて、辺ABを2:3に内分する点をD、辺ACを3:1に内分する点をEとする。 そして点D、Eから辺BCと平行な直線を引き、それと辺AC、ABとの交点をそれぞれF、Gとする。 (1)DG:ABを求めよ。 (2)DF:GEと求めよ。 高校1年の範囲です。メネラウスの定理やチェバの定理は使えなさそうですし・・・ よろしくお願いします。

  • 数B、位置ベクトルの図形問題教えてください

    閲覧ありがとうございます。 問題集の問題で回答は先生に預けているので、解き方がわからなくて困っています。 問題文をそのまま載せます。 -------------------- △ABCにおいて、辺ABを3:2に内分する点をD、△ABCの重心をGとする。そして直線DGと辺ACの交点をE、直線DGと辺BCの延長線の交点をFとするとき、次の比を求めよ。 (1)AE:EC (2)BC:CF -------------------- (1)はどこに文字を置いてよいかわからず、(2)は僕の見通しが違うかもしれませんが、ベクトルでPFの表し方がよくわかりません。 メネラウスとチェバの定理は使ってはいけないことになっているので、ベクトルでの解法を教えてください。 良ければ、計算などは説明は要りませんが、あまり省略しないでいただけると助かります。 よろしくお願いします。

  • 数A 平面図形の三角形の問題です。

    どうしてもわかりません(^▽^;) 三角形ABCの内部の点Pを通り、辺BCに平行な直線がAB、ACと交わる点をそれぞれD、Eとする。 点Pが三角形ABCの重心で、AD=4のとき、線分DBの長さを求めよ。 という問題です。 解答ではDEとBCが平行でAP:PFが2:1だからDB=2 と出していますが、 自分はメネラウスの定理を使って解きました。 まず、APを延長した線とBCとの交点をFとし、 BPを延長した線とACとの交点をGとする。 BD/DA・AF/FP・PG/GB =BD/4・3/1・1/3 =BD/4=1 BD=4 と解きましたが、答え違いますよね汗 どこが間違っているのか教えて下さい!!

  • 図形の問題です

    △ABCの辺ABを2:1に内分する点をD、辺ACを3:1に内分する点をEとする。直線DEとBCの交点をPとする。 (1)DP:PEを求めよ。この問題でメネラウスの定理を使うようですがそれがわかりません。どなたか教えてください。

  • 平面図形の問題

    模試の過去問なのですが解き方が全く分かりません。 鋭角三角形ABCの2辺AB,AC上にAD=DB,AE=ECを満たすように2点D,Eをとる。 また、線分DEの中点をM,AMとBCの交点をNとする。 このとき、AM:MNの値を求めよ。 どこかに平行線を引けばいいのでしょうか?

  • 中学校幾何の証明

    あるサイトに、「対角線ACとBDの交点をOとし、辺AB上の任意の点Pと点Dを結び、対角線ACとの交点をQとおく。線分BQと線分POの交点をRとし、直線ARと辺BCの交点をMとおく。このとき、点Mは、辺BCの中点である。」とあり、 「チェバの定理により、 AP/PB×BS/SO×OQ/QA=1(SはBOとAMの交点) メネラウスの定理により、  AP/PB×BD/DO×OQ/QA=1 よって、 BS/SO=BD/DO=2     このことから、Sは線分BOを、2 : 1 に内分する点である。 △ABCにおいて、点Oは辺ACの中点であるので、Sは△ABCの重心となる。 したがって、中線ASと辺BCの交点であるMは、辺BCの中点となる。」 と証明も書いてあったのですが、BS/SO=BD/DO=2になる理由と、Sが△ABCの重心となる理由が分かりません。非常に分かりにくい説明になってしまいましたが、どなたかご解答お願いします。

  • 平面図形の問題(センター過去問)

    △ABCにおいて、∠Aは鈍角で、∠B=30°である。点Cから直線ABに引いた垂線と直線ABとの交点をHとする。辺BCの中点をMとして、直線ACは三点ABMを通る円と点Aで接しているとする。(点Hの位置は円の内部ではなく、線分BAの延長上にある。 以下問題が続く(求められたのは∠AMB=45°) )(センター本試験2005年) ACとHMの交点をK,直線BKとHCの交点をLとする。△HBKと△BCKの面積比はHL:LCである。 この面積比はどのようにして求められたのでしょうか? 二つの面積は△HBCから△HKCを切り取ったものであることに注目するのかな…? と思うのですが全くわかりません。 よろしくお願いします。

  • 平面図形

    △ABCにおいて、辺ABを2:3に内分する点をD、辺ACを3:1に内分する点をEとする。 そして点D、Eから辺BCと平行な直線を引き、それと辺AC、ABとの交点をそれぞれF、Gとする。 (問) DG:ABを求めよ。 全く分からず図しかかけてません(;_;) 教えてください!

  • 平面図形

    三角形ABCがある。AB=6、BC=10であり、AC上に点Dをとり、DCの長さを6とし、DBの長さを6とする。 また、ADの中点をEとする。辺ABを3:1に分ける点をFとする。 辺DBの延長と辺EFの延長して、交わった点をGとする。 このときAEの長さを求めよ。またBGの長さを求めよ。 と言う問題です。 わかっていることをまとめると 長さがわかっているのは AB=DC=DB=6 BC=10 ADを1:1に分ける点をE ABを3:1に分ける点をF △DBCと△ABDは二等辺三角形である と言うことが文章からわかると思います。 まずAEの長さを考えると 点DからBCに垂線を引き、その交点をHとする。 また△ABDは二等辺三角形だから、点Eと点Bを結ぶ △CDH∽△CBEであるから CD:CB=CH:CE 6:10=5:CE 6CE=50 CE=25/3 CD=6より DE=CE-CD  =25/3-6  =7/3 となり DE=EAなので AE=7/3となりました。 次に 辺の比を使って何とかGBの長さを求めようとしたのですがさっぱりわかりません。 すいませんが、詳しい解説をお願いします。またこのような問題の考え方がありましたら教えてください。