• ベストアンサー
  • すぐに回答を!

図形

xy平面上に2つの放物線C1:y=-2x^2, C2:y=x^2-x+1がある。 C1上の点P(p,-2p^2)、C2上の点Q(q,q^2-q+1)の対して、線分PQの中点Rの存在する範囲を図示せよ。 中点Rを(X.Y)とすると、X=(p+q)/2…(1) Y=(-2p^2+q^2-q+1)/2…(2) これらを満たす実数p,qが存在すればよいので、(1)より、p=2x-q これを(2)に代入して、tに関する2次関数とみて(判別式)≧0より、 範囲はy≦6x^2-2x+1/2 あってますか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数80
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

>(1)より、p=2x-q p=2X-q >これを(2)に代入して、tに関する2次関数とみて(判別式)≧0より、 qに関する >範囲はy≦6x^2-2x+1/2 途中の計算式の変形を正確に書く習慣をつけないとミスをしますね。 Y≦4(X^2)-2X+(5/8) となりますね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

やり方はあっているんですね?ありがとうございました!

関連するQ&A

  • 逆に・・・

     十数年来の疑問を解決したいと思い、ここで質問させて頂きます。大した話しではないのですが・・・。  少なくとも昔の受験問題では、   (1) k^2+2(x+y)k+(2xy+1)=0において、kが実数だとする。(x,y)の範囲を図示せよ。   (2) k^2+2(x+y)k+(2xy+1)=0において、kが任意の実数だとする。(x,y)の範囲を図示せよ。 といった問題が出ていたと思います。お聞きしたいのは、以下に示す解答に逆の検査が必要かどうかですが、まず私には、(1)と(2)が問題として別物に見えます。 (1)の場合  (1)は、可能な全ての実数kに対する(x,y)の満たすべき範囲と、読めます(私には)。字数を少なくしたいので、通常よりも切り詰めて書きますが、   与式においてkが実数 ⇔ 与式の判別式D≧0 なので、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 が解答であり、ここで、   与式の判別式D≧0 ⇒ 与式においてkが実数 を証明しようとしたら、必要十分性を分かっていないとして、減点対象になってもおかしくないと思います。 (2)の場合  (2)は、任意の実数kなので、少なくとも判別式0以上ということで、   与式においてkが任意の実数 ⇒ 与式の判別式D≧0 という事になり、十分性の証明が必要と思えます。(x,y)が、   D=(x+y)^2-(2xy+1)=x^2+y^2-1≧0 を満たしたところで、kが任意の実数をとれるかは、わからないので。私には、これくらいしか考えつけないのですが、逆を言うために(Rは実数全体)、   A={k∈R|k^2+2(x+y)k+(2xy+1)=0 かつ D=x^2+y^2-1≧0} とします。  k∈Rとすれば、そのkについて、   k^2+2(x+y)k+(2xy+1)=0 すなわち、   2(x+k)y=-2x-k^2-1 を満たす(x,y)は、x≠-kであれば、   y=-(2x+k^2+1)/2/(x+k) なので存在し、kは与式を満たす実数なので、k∈A。  x=-kの場合は、   0=2k-k^2-1 となるので、   k^2-2k+1=(k-1)^2=0 ⇒ x=-k=-1(y任意) ⇒ kは与式を満たす実数なので、k∈A となる。従ってR⊂Aであるが、A⊂Rは明らかなので、A=R。  この証明は、少なくとも高校レベルでは、決して易しくないと思います。  何を言いたいかというと、(1),(2)の模範解答に関して、逆の証明を行っているのを見た事がない、という事です(これは、はっきり記憶しています)。その理由なのですが、  (a) (1)と(2)が同じものだと、多くの場合誤解(?)されている.  (b) (2)で逆の証明が難しいので、省略された. と思っていたのですが、考えすぎでしょうか?

  • 詳しい回答を m(_ _)m

    xy平面上の放物線A:y=x^2、B:y=ー(x-a)^2+b は異なる2点P(x1、y1)、Q(x2、y2)で交わるとする。(x1>x2) (1) x1-x2=2が成り立つとき、bをaで表せ。 (2) x1-x2=2を満たしながらa、bが変化するとき、直線PQの通過する領域を求め、図示せよ。 (3) 線分PQの長さが2を満たしながらa、bが変化するとき、線分PQの中点のy座標の最小値を求めよ。 なるべく細かく教えていただけるとありがたいです。

  • 行列

    条件X^-4X+3E=O・・・*をみたすときこのようなxyを座標とする点(x、y)の存在範囲を図示せよ。ただし    x z X=(  )であり、その成分は実数である    z y trX=p、detX=qとおく ケーリーハミルトンの定理より X^2=pX-qE *に代入して (p-4)X-(q-3)E=O (i)p-4=0のときq-3=0⇔x+y=4,xy=3+z^2 (ii)p-4≠0のとき X={(q-3)/(q-4)}E≡kE *に代入して E(k^2-4k-3)=O ∴k=1,3 k=1のとき(x-1)(y-1)=z^2 k=3のときxy-3x-3y=z^2-1 zをどう処理すればいいかわかりません。 実数条件→判別式が正。かと思うがZについて判別式or z^2>0? xyの解と係数の関係をどうにかつかう?

  • 二次関数についての質問です

    xy平面上に放物線C:y=x^2+ax+b 直線L:y=tx+1-t^2がある Cの頂点は点(t/2、1/4)である CとLは異なる2点P,Qで交わっている   (1)a,bをそれぞれtで表せ (2)tの取りうる範囲を求めよ (3)線分PQの長さの最大値を求めよ です。(1)はa=-t, b=(t^2+1)/4。(2)は-√5<t<√5 となりました(合ってるか分かりませんが・・・) (3)をどうやればいいかわかりません。教えていただけると嬉しいです

  • 数II図形と方程式の単元の問題解説

    X^2 + 2y^2 = 1 の範囲を満すとき、x+y^2の最大値、最小値を求める問題において、x+y^2= tとおいて、x^2+2y^2=1に代入してxの二次方程式にする。そこで、判別式から実数解を求めるための条件からtの範囲を求めると最大値は出ます。図形的に見れば楕円と放物線の交点になるので、判別式で最大値、最小値が求められると思うのですが、なぜ判別式からは最小値が出ないのか、解説をお願いします。

  • Q(p+q, pq)の動く範囲で,y≧0の条件?

    ご教示お願いします。 問題:座標平面上の点 ( p, q )は x^2 + y^2 ≦8, y ≧ 0 で表される領域を動く。 点Q (p+q, pq )の動く範囲を図示せよ。 この解答で,X = p+q, Y = pq とおいて,XとYの関係式 X^2 - 2 Y ≦ 8 ・・・・・・(1) を作り,かつ, t^2 - Xt + Y =0 ・・・・・・(2) が実数解を持つことから,この判別式 D = X^2 - 4 Y ≧ 0 ・・・・・・ (3) までは考えたのですが, 問題にある“ y ≧ 0” をどのように反映させてよいかがわかりません。 よろしくお願いいたします。

  • 高3数学の問題が解けません。非常に困っています。

    (1) 点(2, 3)と(3, 1)を結んだ線分(両端を含まない)と直線y=ax+bとの共通点が1つあるとき、点(a, b)の存在範囲を座標平面上に図示しなさい。 (2)xy平面上の原点と点(1, 2)を結ぶ線分(両端を含む)をLとする。曲線y=x&#178;+ax+bがLと共有点をもつような実数の組(a, b)の集合をab平面上に図示しなさい。 以上の2問です。1つだけでもいいのでご回答頂ければ大変助かります。 よろしくお願いいたします。<(_ _)>

  • 解の存在条件

    x^2+y^2=1・・(1),y=x+k・・(2) 実数解(x,y)が存在するためのkの値の範囲を 求めよ。 (1)に(2)を代入して、まとめると、2x^2+2kx+k^2-1=0 これが実数解をもつから、 判別式から、-√2=<k=<√2と解答にはあります。 実数解xは(1)の条件から、-1=<x=<1に存在しなければならないから、 判別式の条件に、、-1=<x=<1に存在するという条件を付け加えなければならないと 思うのですが、どうしてなくてもいいのでしょうか。

  • 領域の図示の問題です

    tを実数とする。xy平面上の点P( t+2,t)と点Q( t-2,-t)を考える。tが全ての実数をとるとき、直線PQが通過する範囲を図示せよ。

  • 2次関数のグラフ総合問題

    Oを原点とするxy平面上の放物線y=x^2をCとする。C上に2点P(p、p^2)、Q(q、q^2) ただし(p<0<q)があり、OPとOQは垂直である。 (1) pq=-_ (2) P、QがC上を動くとき、線分PQの中点の軌跡は、 放物線 y=_ (3) 折れ線POQとCとで囲まれる部分の面積は p=-_のとき、最小値_ この問題の下線部の部分がわかりません。 説明もつけて解答よろしくお願いします。