• ベストアンサー
  • すぐに回答を!

最大.最小の応用問題

放物線C:y=x2乗-2x+4と直線l:y=x-2がある。C上に点Pをとり、この点を通るy軸に平行な直線を引き、Iとの交点をQとするとき、 (1)点Pのx座標をaとして、線分PQの長さをaで表わせ。 (2)線分PQの長さを最小値とそのときの点P,Qの座標を求めよ。 教えて下さい// お願いしますm(_ _)m

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

放物線C:y=x^2 -2x+4=(x-1)^2+3 ...(A) 直線l:y=x-2 ...(B) (1) (A),(B)のグラフを描くと放物線Cが直線lの上方にあるので x=aとして 線分PQの長さ=(a^2 -2a+4)-(a-2)=a^2-3a+6 (2) 線分PQの長さ={a-(3/2)}^2+(15/4)≧15/4 a=3/2のとき最小値=15/4 このとき x=a=3/2なので  P(a,a^2 -2a+4)=(3/2,13/4)  Q(a,a-2)=(3/2,-1/2)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

わかりました// ありがとうございます(-^〇^-)

関連するQ&A

  • 関数の問題です。

    下の図のように関数y=1/2x^2のグラフ上にx座標が-6,2となる点A,Bをとる。また,線分AB上に点Pをとり,Pを通りy軸に平行な直線と放物線,x軸との交点をそれぞれQ,Rとする。このとき,次の問に答えなさい。 (1)直線ABの式を求めなさい。 (2)線分PQとQRの長さの比が3:1となるような点Pのx座標を求めなさい。 お願いしますm(_ _)m

  • 中学校の二次関数を至急教えてください

    (1)図で点P、Qは放物線3分の1x^2 と点A(-6,0) を通る傾きが正の直線との交点である。 AQ:QP=1:3のとき点Pの座標はいくらか。 (2)図で直線lと放物線y=kx^2(kは正の定数)の交点をそれぞれ A、B、lとx軸との交点をCとする。 A、Bのx座標をそれぞれa、b、Cのx座標を-4、 AB:BC=8:1とするとき、 (1)aとbの値はいくらか。 (2)三角形OABの面積が64のとき、kの値はいくらか。 (3)図においてy=2x^2のグラフと直線y=2x+4との交点をそれぞれA、Bとする。また、y軸に平行な直線lと直線AB、放物線、x軸との交点をそれぞれP、Q、Rとする。 このとき、点Pが線分AB上にあるとき、PQ=QRとなるような点Pのx座標の値はいくらか。 数学が苦手なので分かりません、よろくおねがいします。

  • 一次関数

    関数 y=-x+12 のグラフと関数 y=2x のグラフとの交点を、A、y=-x+12とx軸との交点をBとします。また、線分OA上に点Pをとり、点Pを通りx軸に平行な直線と直線ABとの交点をQとします。 これについて、次の問いに答えなさい。 (1) 点Pのx座標が1のとき、線分PQの長さを求めなさい。     答え 9 (2) △AOQの面積と△BOQの面積が等しい時、直線OQの式を求めなさい。     答え y=1/2x (3) 線分PQの長さが8のとき、点Qのx座標を求めなさい。    答え 28/3 (1) (2) の求め方はわかりましたが、(3)が分かりません。 求め方を教えて下さい。

  • 数Iの問題の解き方を教えてください。

    放物線C : y=x^2+ax+2a-6 と x 軸の交点をP , Q とするとき、線分PQの長さが2√6以下になるのは 0≦a≦8 のときである。 また、線分PQの長さは、a=(ウ)のとき最小になり、このとき、2点P , Q とCの頂点で作られる三角形の面積は(エ)√(オ)である。 お願いします。

  • 「放物線と三角形の面積」の問題が分かりません。

    図のように、放物線y=x²上に2点A(-3、 9)、B(4、 16)があり、この放物線上の点Aと点Bの間に点Pをとる。 次の問いに答えなさい。 (1) 点Pからy軸に平行な直線を引き、直線ABとの交点をQとする。点Pのx座標をtとして、PQの長さをtを用いて表しなさい。 (2) △ABPの面積が21になる時の点Pの座標を求めなさい。 この問題の答えと、解き方を教えて下さい。 よろしくお願いしますm(__)m

  • この問題の解法を教えてください!

    2つの曲線は、関数 y=f(x)=3x2(2乗)(x>0)  y=g(x)=19x2(2乗)(x>0) のグラフである。 点Pは、曲線y=f(x)上を、点Qはy軸上を動く。また、点Pを通り、y軸に平行な直線の、曲線y=g(x)との交点をRとする。点Pのx座標がaの時、線分PQ、PRが隣り合う2辺とする平行四辺形が正方形になる。このとき、aの値を求めよ。 問題の答えは、16分の1なのですが、どのように解法していけばよいか、教えてください。

  • 問題です

    関数y=x^2のグラフと、直線Iが2点A B で交わっていて、Aのx座標は1、Bのx座標は3です。この時次の問いに答えよ。 1)Bの座標は? 2)2点A,Bを通る直線の式は? 3)線分A Bの長さは? 4)関数y=x^2のグラフ上を動く点Pと、直線I上を動く点Qがある。 PとQのx座標が等しく、PQ=8である時、Pのx座標は? 関数y=ax^2のグラフと、このグラフ上の2点A B を通る直線がある。点Aは(-2,1)で、点Bのx座標は6である。このときの問いに答えよ。 1)aの値は? 2)2点A Bの通る直線式は? 3)線分A Bの長さは? 4)y軸上の原点より上側に点Pをとり、△PAB=△OABとなる時、点Pの座標は? 関数y=x^2のグラフ上に2点A Bがあり、A Bのx座標はそれぞれー2  3である。いま、y 軸に平行な直線をひき、直線A Bと交わる点をP、y=x^2のグラフと交わる点をQとする。 1)直線A Bのしきは? 2)点Aの座標は? 3点Pのx座標が5のとき、PQの長さは? 4)点Pが線分A B上にあって、PQ=4となるとき、Pの座標を求めると?

  • 数学の問題です 三角形の面積の求め方

    soipon0さん 数学の積分の問題です 放物線 y=x^2上にx座標がそれぞれα,β(α<0<β)である点P,Qをとる。 P,Qにおける接線の交点をRとするとき,次の問いに答えよ。 (1)点Rの座標を求めよ。 (2)△PQRの面積をS1とし,直線PQと放物線y=x^2で囲まれた図形の面積をS2とするとき,S1:S2を求めよ。 という問題なのですが(2)のS1を求める時に△PQRをy軸に平行な直線で2つの三角形にわけて考えるとあるのですがわかりません PQの中点をM[(α+β)/2,(α^2+β^2)/2]としてy軸に平行な直線MRができます。 模範回答は S1=1/2(β-α)•MRで出るのですが (β-α)がどこから出てきてどういう役割なのかわかりません わかりやすい解答お願いします

  • 数学の問題です。 お願いします

    a>0とし、放物線y=ax二乗上の点P(1、a)における接線をL、点Pを通りLと直交する直線をL´、y軸とL´の交点をQとする。線分PQ、y軸および放物線y=ax二乗で囲まれる図形の面積をSとして、Sを最小にするaの値と最小値を求めよ。 お願いします

  • 数学の問題がわかりません。

    数学の問題がわかりません。 aを正の定数とする。2つの放物線C1:y=x^2 と C2:y=(x-2)^2+4a の交点をPとする。 (1)放物線C1上の点Q(t,t^2)における接線の方程式を求めよ。更に、その接線のうちC2に接するものをLとする。Lの方程式を求めよ。 (2)点Pを通りy軸に平行な直線をmとする。Lとmの交点をRとするとき、線分PRの長さを求めよ。 (3)直線L,mと放物線C1 で囲まれた図形の面積を求めよ。 わかりません。。 お願いします!!