• ベストアンサー
  • すぐに回答を!

数Iの問題の解き方を教えてください。

放物線C : y=x^2+ax+2a-6 と x 軸の交点をP , Q とするとき、線分PQの長さが2√6以下になるのは 0≦a≦8 のときである。 また、線分PQの長さは、a=(ウ)のとき最小になり、このとき、2点P , Q とCの頂点で作られる三角形の面積は(エ)√(オ)である。 お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

放物線C : y=x^2+ax+2a-6を平方完成させると、 y=(x+a/2)^2-a^2/4+2a-6なので、頂点の座標は(-a/2、-a^2/4+2a-6)である。なお、-a^2/4+2a-6<0でないと、問題は成立しない。 x 軸の交点P , Qのx座標をそれぞれα、β(但し、α<β)とする。線分PQ=β-αである。 β-α≦2√6は(β-α)^2≦24と同義である。 (β-α)^2={(α+β)^2-4αβ }、解と係数の関係より、α+β=-a、αβ=2a-6だから、(β-α)^2={ちょっと中略 }=a^2-8a+24=(a-4)^2+8≦24 (a-4)^2+8≦24 → (a-4)^2≦16 → -4≦(a-4)≦4 → 0≦a≦8が導かれる。 ところで、線分PQの最小値 → β-αの最小値 → (β-α)^2の最小値 → (a-4)^2+8の最小値であるから、a=4の時に線分PQは√8、つまり2√2の最小値を取る。 a=4の時、頂点のy座標は-2であるから、求めたい三角形については、底辺=線分PQ=2√2、高さ=2となって、面積は、2√2となる。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました☆

関連するQ&A

  • 数学の問題です。 お願いします

    a>0とし、放物線y=ax二乗上の点P(1、a)における接線をL、点Pを通りLと直交する直線をL´、y軸とL´の交点をQとする。線分PQ、y軸および放物線y=ax二乗で囲まれる図形の面積をSとして、Sを最小にするaの値と最小値を求めよ。 お願いします

  • 最大.最小の応用問題

    放物線C:y=x2乗-2x+4と直線l:y=x-2がある。C上に点Pをとり、この点を通るy軸に平行な直線を引き、Iとの交点をQとするとき、 (1)点Pのx座標をaとして、線分PQの長さをaで表わせ。 (2)線分PQの長さを最小値とそのときの点P,Qの座標を求めよ。 教えて下さい// お願いしますm(_ _)m

  • こんばんは。数?の問題について教えてください。

    こんばんは。数?の問題について教えてください。 原点Oからの放物線y=x^2+ax+bに引いた2本の接線の接点をP,Qとする。(b>0、Pのx座標<Qのx座標) 線分PQと放物線およびy軸で囲まれた図形の面積をS1、線分PQと放物線およびy軸で囲まれた図形の面積をS2とするとき、S1とS2との比を求めよ 式まで書いていただけるとうれしいです; よろしくお願いします。

  • 数学Iの問題です

    1次関数 y=1/2x + 4 のグラフとx軸との交点をA、 y軸との交点をBとする。 線分AB上に点PをとってPからx軸に垂線をひき、 x軸との交点をQとする。 四角形BOQPの面積が6になるときの、 点Pの座標を求めよ。 この問題の回答に、 「点Pが線分AB上にあるための条件は 0<x<8 」 と書いてありました。 なぜ、0と8を含まないかを教えてください。 自分で考えたのは、「図形の面積が0になってしまうから」と 「四角形でなくなるから」ですが、 違う問題では面積が0になる値も範囲に含んでいたので 違う理由なのかと思いました。 「線分AB上」というのは、点A。点B上は含まないのでしょうか。 理由がよくわからないので教えてください。 画像添付しました。

  • 数学の問題

    y=ax^2+2ax+a+6・・・(1) y=x^2+bx+2b-6・・・(2) (1)のグラフがx軸と二点P,Qで交わり、線分PQの長さが2√6になるのは、a=??のときである。 また、(2)のグラフとx軸との交点をR、Sとしたとき、線分RSの長さが2√6以下になるのは、?≦b≦?のときである。 基礎的な事が全く解かりません。 何の公式を使えばいいのか、又どうしてそうなるか等といった変化の過程も詳しく教えて下さい。

  • 積分の問題です

    放物線y=x^2-2と直線y=axの二つの交点をA,Bとする。2点A,Bの間の放物線上に点Cをとり、放物線と線分ACで囲まれた図形の面積をS1、放物線と線分BCで囲まれた図形の面積をS2とする。このとき、S1+S2の最小値をaを用いて表せ。 (一対一対応の数学II、p160の演習11) 以下は別解です 放物線y=x^2-2と直線y=axが囲む部分の面積をSとおくと、S1+S2=S-△ABCである。そこで、△ABCの面積が最大になる場合について考える。 ここで図形が書いてあるのですが、点Cの位置はCでの接線が線分ABに平行になるような場所になっています。 これはなぜなのでしょうか? よろしくおねがいします。

  • 2次関数の問題です。

    2次関数y=ー2x∧2+ax+bのグラフをcとする。cは頂点の座標が (a/[ア],a∧2/[イ]+b) の放物線である。cが点(3,-8)を通るとき、     b=[ウ][エ]a+10 が成り立つ。このときグラフcを考える。 (1)cがx軸と接するとき、a=[オ]またはa=[カ][キ]である。a=[カ][キ]のときの放物線は、a=[オ]のときの放物線をx軸方向に[ク]だけ平行移動したものである。 (2)cの頂点のy座標の値が最小になるのは、a=[ケ][コ]のときで、この時の最小値は[サ][シ]である。 以上。 (1)までは理解できるのですが、(2)に苦しんでいます。わかりやすく教えてください。 宜しくお願いします

  • この問題教えてください!

    この問題教えてください! 座標平面上において、放物線y=x^2上に異なる2点P,Qをとり、線分PQの中点をMとし、Mの座標を(a, b)とする。 (1) a=1, b=3のとき、線分PQの長さPQを求めよ。 (2) PQ=4の とき、b を a の式で表せ。 (3) PQ=4を満たしながらP, Qを動かすとき、b の最小値を求めよ。 (1)のPQが2√10になるのはわかりました。 それ以外の解答おねがいします。

  • 2次関数のグラフ総合問題

    Oを原点とするxy平面上の放物線y=x^2をCとする。C上に2点P(p、p^2)、Q(q、q^2) ただし(p<0<q)があり、OPとOQは垂直である。 (1) pq=-_ (2) P、QがC上を動くとき、線分PQの中点の軌跡は、 放物線 y=_ (3) 折れ線POQとCとで囲まれる部分の面積は p=-_のとき、最小値_ この問題の下線部の部分がわかりません。 説明もつけて解答よろしくお願いします。

  • 2次関数の問題です。数Iレベルです。

    2次関数の問題です。 頂点が(P,Q)の放物線Y=(X-P)2乗+Pが点(2,3)を通り、 頂点は直線Y=3x-1上にある。ただしP<1とする。 P,Qの値と、放物線とx軸との交点のx座標は? という問題です。 いろいろと、やってみたのですが、放物線の式が、平方完成された式なのかも? はてなです。すみませんが、やさしい回答をお待ちしております。