• ベストアンサー
  • 暇なときにでも

2次関数のグラフ総合問題

Oを原点とするxy平面上の放物線y=x^2をCとする。C上に2点P(p、p^2)、Q(q、q^2) ただし(p<0<q)があり、OPとOQは垂直である。 (1) pq=-_ (2) P、QがC上を動くとき、線分PQの中点の軌跡は、 放物線 y=_ (3) 折れ線POQとCとで囲まれる部分の面積は p=-_のとき、最小値_ この問題の下線部の部分がわかりません。 説明もつけて解答よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • postro
  • ベストアンサー率43% (156/357)

こんなふうになりましたが、あまり自信なし。 (1) 直線OPの傾きはp  OQの傾きはq  (但し p≠0 , q≠0) この2つの直線が直交しているので pq=-1 ・・・・答え (2) P(p、p^2)、Q(q、q^2) の中点Rの座標を R(x、y) とおけば x=(q+p)/2  y=(q^2+p^2)/2 y=(q^2+p^2)/2  =((q+p)^2 - 2pq)/2  =((q+p)^2)/2 + 1  =2x^2 + 1 ・・・・答え (3) 折れ線POQとCとで囲まれる部分の面積Sは S=∫(x=p→0)(px-x^2)dx + ∫(x=0→q)(qx-x^2)dx  =(1/6)(q^3 - p^3)  =-(1/6)(p^3 + 1/p^3)≧ 1/3 等号は  p=-1 のとき、最小値 1/3  ・・・・答え

共感・感謝の気持ちを伝えよう!

質問者からのお礼

とても参考になりました。お答えいただきありがとうございます。最後は相加相乗平均ですね。

その他の回答 (1)

  • 回答No.1
  • BBblue
  • ベストアンサー率24% (14/57)

(1) OP と OQ の傾きを求めましょう。垂直になる条件は? (2) 中点を M(x,y) とします。x,y を p,q で表すと? そこから p,q を消去すれば?((1) を使います) (3) 直線 PQ と C で囲まれる部分の面積は?(積分) △OPQ の面積をここから引いてやります。 頑張って計算してくださいね!

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数(2)の軌跡の問題

    この問題の解き方を教えてください。 「放物線y=ax2(2乗)(a≠0)上を点P、Qが∠POQ=90°を満たしながら動く時、線分PQの中点Rはどのような曲線をえがくか。ただし、Oは原点とする。」

  • 数学の問題です。

    数学です。 よろしくお願いします。 直線y=mxが放物線y=x^2+1と相異なる2点P,Qで交わるとする。 mがこの条件を満たしながら変化するとき、mのとりうる値の範囲を求めよ。 また、このとき 、線分PQの中点Mの軌跡を求めよ。

  • 円 接線 軌跡

    mを正とし、円(x-3)^2 + (y-5)^2 = 11をC1、直線x-y-m=0をlとする 原点OからC1に引いた1つの接線の接点をQとする このとき線分OQの長さは√23である tを正の実数とし、円x^2 + y^2 = 1をC2とする PからC1に引いた1つの接線の接点をQ1、PからC2に引いた1つの接線の接点をQ2とするとき、線分PQ1と線分PQ2の長さの比がt:1となるような点Pの軌跡をC3とする C3が点(1,1)を通るときのtとこのときC3がどのような軌跡を描くかを求めよ 解き方を教えてください 検討がつきません

  • 面積の問題

    高校2年生ものです。 ある問題集に以下のようなものがありました。 放物線y = x^2 の上を動く2 点P,Q があって,この放物線と線分PQ が囲む部分の面積が常に1 であるとき,PQ の中点R が描く図形の方程式を求めよ。 P,Qのx座標をそれぞれp,qとすると、面積が1だから(q-p)^3=6という式が成り立ち、Rはx=(p+q)/2,y=(p^2+q^2)/2 x=(p+q)/2を変形していくとpq=2x^2-y とまでは考えましたが、そこからどうやったらいいかわかりません。 どなたか教えてください。

  • 軌跡の問題です

    2000年津田塾大学の過去問です。 放物線y=x2(xの2乗)上の2点P(a,a2)、Q(b,b2)がb=a+2を満たしながら動くとする。このとき、線分PQの中点の軌跡の方程式を求め、そのグラフをかけ。 線分PQの中点をR(x,y)とおくと考えて x=a+b/2 y=a2+b2/2 と考え、b=a+2を上の式に代入して考えてみたのですが、その後がよく分からなくなってしまいました。 その後の回答の仕方を教えてください。 ちなみに中点の軌跡だからy=x2のグラフと同じ形と考え、最小値を求めてそれを式に表すという方法ではだめでしょうか?

  • この問題教えてください!

    この問題教えてください! 座標平面上において、放物線y=x^2上に異なる2点P,Qをとり、線分PQの中点をMとし、Mの座標を(a, b)とする。 (1) a=1, b=3のとき、線分PQの長さPQを求めよ。 (2) PQ=4の とき、b を a の式で表せ。 (3) PQ=4を満たしながらP, Qを動かすとき、b の最小値を求めよ。 (1)のPQが2√10になるのはわかりました。 それ以外の解答おねがいします。

  • こんばんは。数?の問題について教えてください。

    こんばんは。数?の問題について教えてください。 原点Oからの放物線y=x^2+ax+bに引いた2本の接線の接点をP,Qとする。(b>0、Pのx座標<Qのx座標) 線分PQと放物線およびy軸で囲まれた図形の面積をS1、線分PQと放物線およびy軸で囲まれた図形の面積をS2とするとき、S1とS2との比を求めよ 式まで書いていただけるとうれしいです; よろしくお願いします。

  • 軌跡の問題です

    放物線y=x^2と直線y=mx+m(m>0)の交点をP,Qとする。 mが変化するとき、線分PQの中点の軌跡を求めよ。 という問題です。 答えはy=2x^2+2x(x>0)とわかっているのですが 途中の計算がさっぱりです。 教えてください。お願いします。 ちなみにx^2とはxの二乗という意味です。 初めてだから書き方が違うかもしれませんが・・・

  • 数I 2次関数とグラフ

    現在、青チャート 数Iをやっているのですが、2次関数とグラフの単元で解説を見ても わからないところがあります。 cを実数の定数とし、点Pの座標(0, c)とする。 点Qが放物線 y=x^2上を動くとき、線分PQの長さの最小値を求めよ。 (数研出版 チャート式基礎からの数I+A P105 130番より) 点Q(x, y)とおくとQは y=x^2上を動くから  PQ^2=x^2+(y-c)^2=x^2+y^2-2cy+c^2    =y+y^2-2cy+c^=y^2-(2c-1)y+c^2    =(y-(2c-1)/2)^2+c-1/4 ただし、y=x^2≧0 .... (数研出版 チャート式基礎からの数学I+A <解答編> P66より) と、このようになっておりこの後、 i)(2c-1)/2<0 すなわち、c<1/2の時 ii)(2c-1)/2≧0 すなわち c≧1/2の時 と、場合分けをしております。 平方完成をしたところまではわかるのですが、 何故 (2c-1)/2<0 と (2c-1)/2≧0 とに分けたのか、どのように分けたのかが、 全然わかりません。 cの値を増やしていくと、原点より二次関数上のほうが短くなるのはわかるのですが、 原点との距離と、二次関数上との距離が等しくなる値をどうやったら求められるかなどもわからないです。 どのようにすればよいでしょうか?

  • 数学の問題

    数学の問題 原点O(0,0)を中心とする半径1の円に、円外の点P(x0,y0)から2本の接線を引く。 (1)2つの接点の中点をQとするとき、点Qの座標(x1,y1)を点Pの座標(x0,y0)を用いて表せ。 また、OP*OQ=1であることを示せ。 という問題です。 接点をA,Bとすると、AとBを結んだ線分は点Pの極線だから、その方程式は x0x + y0y = 1 というのは分かります。 PA=PB だから三角形PABは二等辺三角形 よって、点Pから点Qに線を引くと、それらは垂直に交わる。 つまり、PQの方程式を求め、それとx0x + y0y = 1 との交点が点Qの座標です。 なので、PQを求めたいわけなんですが 求め方が分かりません。 y0x + x0y = 0 がPQなんですが、どうやって求めるのでしょうか? また、その座標を求めたとして、次に「OP*OQ=1であることを示せ」ですが 解説では OQ^2 = x^2 + y^2 =1/OP^2 よって、OP*OQ = 1 とあるんですが、なぜこのような考え方なのかが分かりません。 どのような考え方なんでしょうか?