• ベストアンサー
  • すぐに回答を!

数学Iの問題です

1次関数 y=1/2x + 4 のグラフとx軸との交点をA、 y軸との交点をBとする。 線分AB上に点PをとってPからx軸に垂線をひき、 x軸との交点をQとする。 四角形BOQPの面積が6になるときの、 点Pの座標を求めよ。 この問題の回答に、 「点Pが線分AB上にあるための条件は 0<x<8 」 と書いてありました。 なぜ、0と8を含まないかを教えてください。 自分で考えたのは、「図形の面積が0になってしまうから」と 「四角形でなくなるから」ですが、 違う問題では面積が0になる値も範囲に含んでいたので 違う理由なのかと思いました。 「線分AB上」というのは、点A。点B上は含まないのでしょうか。 理由がよくわからないので教えてください。 画像添付しました。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

ブログの問題見せていただきました もう一つの問題は四角形の周上の点の移動ですね。 1の方の問題(つまりこの質問の方ですね)の点Pはグラフy=-(1/2)x^2+4上の点AとBの間のどこかにPがある時四角形BOQPができるためのPの位置と考えるといいかと思います 2の方の問題は時間によって点Pが移動して行くので移動時間の間はたとえ面積が0になってしまう時もpの位置を考えます

共感・感謝の気持ちを伝えよう!

質問者からのお礼

解釈の仕方としては、 1は「四角形BOQPができるための点Pの位置」と考えるのですね。 それに対して、2は「時間によって移動する点P」だと。 おっしゃっていることは多分理解できました!! ありがとうございました^^

その他の回答 (2)

  • 回答No.2

0<x<8と言う条件はおっしゃるとおり x=0なら面積はなくなってしまうし x=8なら三角形になってしまうのでそのような条件になっているのだと思います ただ線分AB上は点A,Bも含みます。この場合は含んだ上で四角形BOQPが存在するX座標の条件が上記のものとなるからだと思います。 違う問題というのがどういう問題かわかりませんのでそれについてはなんとも言えないのですが

共感・感謝の気持ちを伝えよう!

質問者からの補足

http://ameblo.jp/sukisukiikimonogakari128/entry-10943581368.html こちらに詳しいことを書きました。 お手数ですが、見ていただけないでしょうか。

  • 回答No.1

こんばんは(^^)  まず、一次関数の式なんだけど…質問にはy=1/2x+4…ってあるけど、多分  y=-1/2x+4…の間違いだよね?(図を見るとこっちの式になるはずなんだけど…)  そうだとして、この問題の条件は、「面積が6になる点P」を求めるわけだから、もちろん面積が0になってしまうような条件は当てはまらないから…じゃないかな?

共感・感謝の気持ちを伝えよう!

質問者からの補足

あ、本当だ。-1/2xですね。すみません。 http://ameblo.jp/sukisukiikimonogakari128/entry-10943581368.html 自分のブログに書いてあるので、 お手数ですが読んでもらえませんか。

関連するQ&A

  • 数学の問題、解き方を教えてください

    タイトル通りです 下記の数学の問題の解き方を教えてください ①曲線xy=1上に異なる3点A(a,1/a)とB(b,1/b)とC(c,1/c)をとり点A、Bからそれぞれ対辺に垂線をおろしその2本の垂線の交点をHとする。このとき点Hがこの曲線上にあることを証明しなさい ②座標(1,1)の点を通る直線をmとしmとx軸、y軸との交点をそれぞれA、Bとする。mを動かすとき線分ABの中点の軌跡を求めなさい 2題もあってすみません 1題でもいいのでお願いします

  • 数学の問題です。お願いします。

    数学の問題です。お願いします。 放物線y=9-x^2とx軸の交点をA,Bとし、線分ABと放物線とで囲まれた部分に台形ABCDを内接させるとき、この台形の面積の最大値を求めなさい。

  • 受験生です。数学の問題がわからなくて困っています

    数学の時間に出されたプリントの問題がわからなくて困っています。 もう中学校は卒業してしまい、先生にも会えなくなって、答えのプリントも配られていないので、答えがわかりません。家族に聞いても、わからないようで、困っています。 問題は、 図で、A、Bはそれぞれ関数y=-x+12のグラフとx軸、y軸との交点、Cはx軸上の点である。Pは線分OB上の点、Qは直線CPと線分ABとの交点である。また、Sは線分OA上の点で、四角形CSQRは長方形である。点Cの座標が(-3、0)のとき、次の問いに答えなさい。 問い 四角形CSQRが正方形になるときの点Sのx座標を求めなさい。 この問いは四つ目で、その前に出てきた三つの問いとその答え↓ ※私が求めた答えなので、合っているかはわかりません。 (1)CP=PQとなるときの点Qの座標を求めなさい。 A,(3、9) (2)点Aを通り、直線BCに平行な直線の式を求めなさい。 A,y=4x-48 (3)三角形BQPの面積が三角形BCPの面積の2倍になるとき、直線CPの式を求めなさい。 A,y=3x+9 もし答えてくれる方がいれば、よければ求め方も教えてくださるとうれしいです。 よろしくお願いします。 図は画像を見てください。

  • 関数の面積です   採用試験の問題でした。

    関数y=X2(xの2乗)のグラフの上で、X座標が-1,2である点をそれぞれA.Bとし、この点A.Bと点C(2. 1)を頂点とする△ABCをつくる。辺AB、ACとY軸との交点をそれぞれD,Eとし、頂点Cから辺ABに下ろした垂線と辺ABとの交点をPとする。このとき△BPCの面積は△DAEの面積の何倍になるか? という問題で、答えは2分の9倍です。解き方を教えてください。こういった場合はやはりグラフを書いたりしてから解いた方がよいのでしょうか?  お願いします。

  • 都立高校入試の数学問題を解説してください

    先日行われた都立高校の数学入試問題を解いてみていますが、どうしてもわからない問題があります。どなたか解説していただけないでしょうか。 分からないのは以下の問題です。 【数学】大問3-[問2]-(2) http://www.kyoiku.metro.tokyo.jp/press/pr090223n-mondai.htm 2次関数y=1/4X^2のグラフを表す曲線Lがある。 点A,Bはともに曲線L上にあり、座標はそれぞれ(-6,9),(6,9)である。 点AとBを結ぶ。 曲線L上にあり、x座標が-6より大きく6より小さい数である点をPとする。 点Pを通りy軸に平行な直線を引き、線分ABとの交点をQとする。 座標軸の1目盛りを1cmとする。 さらに、 点Pのx座標が正の数であるとき、点Aと点Pを結び、線分APとy軸との交点をRとし、点Qと点R、点Bと点Pをそれぞれ結ぶ。 PQ=AQとなるとき、△RPQの面積は、△PBAの面積の何分のいくつか。 というものです。 基本的なことは理解しているつもりですが、応用力がなくてこういう問題になるとまるで分りません。 よろしくお願いします。

  • この問題が解ける人はといてくれませんか

    曲線y=logx(x>0)上の点P(a,loga) (a>1)での接線をLとし、Pからx軸へおろした垂線の足をHとする。さらに、接線Lとx軸、およびy=logxで囲まれた図形の面積をS1、曲線とx軸、および線分PHで囲まれた図形の面積をS2とする。 (1)S1、S2を求めよ。 (2)aー>∞のときのS1/S2・PHの極限を求めよ。

  • 数学の問題です

    数学の問題です。 小問が4つありますが、3と4を解答お願い致します。 原点Oと2点 A(2、-4)、B(3、a)があります。 1、三角形OABの面積を求めよ。 答え 15 2、三角形OABの面積を原点Oを通る直線で2等分するとき、この直線と辺ABとの交点Cの座標を求めよ 答え(2分の1、2分の13) 3 直線ABとy軸の好転をDとする。 Dを通る直線で三角形OABの面積を2等分する時、この直線の式を求めよ。 答えはy=-9x+6 この解答に至るプロセスを教えて下さい。 4、y軸に平行な直線で三角形OABの面積を2等分するとき、その直線と辺OB,辺ABとの交点をそれぞれ、P,Qとするとき 線分PQの長さを求めよ。 答えはPQ=ルート30 この解答に至るプロセスを教えて下さい。 よろしお願い致します。

  • 数Iの問題の解き方を教えてください。

    放物線C : y=x^2+ax+2a-6 と x 軸の交点をP , Q とするとき、線分PQの長さが2√6以下になるのは 0≦a≦8 のときである。 また、線分PQの長さは、a=(ウ)のとき最小になり、このとき、2点P , Q とCの頂点で作られる三角形の面積は(エ)√(オ)である。 お願いします。

  • 数学の問題がわかりません。

    数学の問題がわかりません。 aを正の定数とする。2つの放物線C1:y=x^2 と C2:y=(x-2)^2+4a の交点をPとする。 (1)放物線C1上の点Q(t,t^2)における接線の方程式を求めよ。更に、その接線のうちC2に接するものをLとする。Lの方程式を求めよ。 (2)点Pを通りy軸に平行な直線をmとする。Lとmの交点をRとするとき、線分PRの長さを求めよ。 (3)直線L,mと放物線C1 で囲まれた図形の面積を求めよ。 わかりません。。 お願いします!!

  • 高校入試・関数のグラフの問題【3】

    次の問題がどうしてもわかりません。詳しく教えてください。 ========================== 【1】下の図で、点Oは原点、直線lはy=-x+6のグラフを表している。 直線lとx軸、y軸との交点をそれぞれA、Bとし、y軸上の点でy座標が3の点をCとする。 線分AB上を動く点をPとし、2点P,Cを通る直線をm、直線mとx軸との交点をQとする。このとき次の問いに答えよ。 (3)点Pのy座標が3より小さく、△PBCの面積と△PAQの面積が等しくなるとき、点Qの座標を求めよ。 ========================== 力をお貸しください。よろしくお願いします。