• 締切済み

微分です

x= ξcosθ + ηsinθ y= ξsinθ - ηcosθ (∂f/∂x)^2 + (∂f/∂y)^2 を (∂f/∂ξ)と(∂f/∂η)で表せ という問題です。 fは特に断られていないのですが z=f(x,y) だろうな、という所で行き詰りました(>_<) お願いします!

みんなの回答

noname#26313
noname#26313
回答No.1

∂f/∂ξ=(∂f/∂x)(∂x/∂ξ)+(∂f/∂y)(∂y/∂ξ) ∂f/∂η=(∂f/∂x)(∂x/∂η)+(∂f/∂y)(∂y/∂η) (∂x/∂ξ)・(∂y/∂η)-(∂x/∂η)・(∂y/∂ξ) を ∂(x,y)/∂(ξ,η) と表わすことにすると、 ∂f/∂x={(∂f/∂ξ)・(∂y/∂η)-(∂f/∂η)・(∂y/∂ξ)}/{∂(x,y)/∂(ξ,η)} ∂f/∂y={(∂f/∂η)・(∂x/∂ξ)-(∂f/∂ξ)・(∂x/∂η)}/{∂(x,y)/∂(ξ,η)} となる。 ∂x/∂ξ=cosθ、∂x/∂η=sinθ ∂y/∂ξ=sinθ、∂y/∂η=-cosθ であるから、これらを上の式に代入すると、 ∂f/∂x={-cosθ・(∂f/∂ξ)-sinθ・(∂f/∂η)}/{∂(x,y)/∂(ξ,η)} ∂f/∂y={cosθ・(∂f/∂η)-sinθ(∂f/∂ξ)}/{∂(x,y)/∂(ξ,η)} ∴(∂f/∂x)^2+(∂f/∂y)^2={(∂f/∂ξ)^2+(∂f/∂η)^2}/{∂(x,y)/∂(ξ,η)}^2 ∂(x,y)/∂(ξ,η)=(∂x/∂ξ)・(∂y/∂η)-(∂x/∂η)・(∂y/∂ξ) =cosθ・(-cosθ)-sinθ・sinθ=-1 であるから、{∂(x,y)/∂(ξ,η)}^2=1 故に、 (∂f/∂x)^2 + (∂f/∂y)^2=(∂f/∂ξ)^2+(∂f/∂η)^2 であり、 (∂f/∂ξ)^2+(∂f/∂η)^2 と表わせる。 

shingo9009
質問者

お礼

bonsensさんっ丁寧な回答ありがとうございます(-^〇^-)ノ

関連するQ&A

  • 偏微分の証明問題について

    偏微分のチェイン・ルールを使った証明問題がわかりません. z=f(x,y) , x=ucosα-vsinα , y=usinα+vcosα とするとき, z[xx] + z[yy] = z[uu] + z[vv] が成り立つことを示せという問題で, まず右辺のz[uu]を導く段階で z[uu] = (z[u])[u] = (z[x]・cosα + z[y]・sinα)[u] =(z[x])[u]・cosα+(z[y])[u]・sinα ・・・(1) =(z[xx]・cosα+z[xy]・sinα)・cosα + (z[yx]・cosα+z[yy]・sinα)・sinα ・・・(2) (1)から(2)がなぜ出てくるのかが理解できないです. よろしくお願いします.

  • 方向微分

    ω=f(x、y、z)上の点(x0、y0、z0)における(cosα、cosβ、cosγ)方向への方向微分を求めよ。 (ただしベクトル(cosα、cosβ、cosγ)はx軸、y軸、z軸とのなす角がそれぞれα、β、γであるような単位ベクトル(方向余弦)である) 問題は以上です。 私の解いた回答は ω=f(x、y、z)を一次化するとdω=(∂f/∂x)dx+(∂f/∂y)dy+(∂f/∂z)dz 点(x0、y0、z0)からの方向微分なので dω=∂f/∂x(x0、y0、z0)dx+∂f/∂y(x0、y0、z0)dy+∂f/∂z(x0、y0、z0)dz となる。 よって (cosα、cosβ、cosγ)方向への方向微分= {∂f/∂x(x0、y0、z0)cosα+∂f/∂y(x0、y0、z0)cosβ+∂f/∂z(x0、y0、z0)cosγ}/√cos^2α+cos^2β+cos^2γ なのですがうまくまとまらず、もっときれいな形になるのではないかと思うのですが・・・。 どなたかアドバイスをお願いします。

  • 偏微分・全微分を使った証明

    力学のある問題の証明で困っております。 z(x,y)   zはx,yを変数に持つ関数(式は具体的には指定されていない) x=rcosα-ssinα y=rsinα+scosα  (αは定数) の時 ∂^2z/∂x^2+∂^2z/∂y^2 = ∂^2z/∂r^2+∂^2z/∂s^2 を証明せよ。 (^2は二階微分) です。 全微分を駆使して証明するようなのですが、私のやり方では右辺を展開する途中で ∂^2z/(∂r∂x)cosα+∂^2z/(∂r∂y)sinα-∂^2z/(∂s∂x)sinα+∂^2z/(∂s∂y)cosα が出てきました。(ここまで合ってればいいのですが・・・) そうすると、sinαとcosαの係数にある微分記号の分母∂x,∂yが邪魔で、この先どう変形して良いのかわからず、左辺の式まで持っていけません。 どなたかわかりませんでしょうか? 

  • 合成関数の偏微分

    z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

  • 合成関数の偏微分について

    z=f(x,y)で  x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。

  • 合成関数の偏微分法を用いた解き方

    いつもお世話になっています。 以下の問題を解いてみたのですが、あっているのか自信がもてません。 (特に、(4)(5)のsinθ,cosθが含まれるケース) 間違いなど、あればご指導のほど、よろしくお願いいたします。 【問題】 「合成関数の偏微分法」を用いて、継ぐの合成関数についてZu,Zv(またはZθ,Zr)を求めよ。 (2) z=x^2-y, x=u+v, y=uv Zu = Zx・Xu + Zy・Yu = 2x・1+(-1)・v=2x-v Zv = Zx・Xv + Zy・Yv = 2x・1+(-1)・u=2x-u (3) z=e^x・sin(y), x=u-v, y=uv Zu = Zx・Xu + Zy・Yu = e^x・sin(y)・1+e^x・cos(y)・v = e^x・sin(y)+v・e^x・cos(y) Zv = Zx・Xv + Zy・Yv = x^x・sin(y)・(-1)+e^x・cos(y)・u = -e^x・sin(y)+u・e^x・cos(y) (4) z=x+y, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (1)・(-r・sinθ)+(1)・(r・cosθ) = (-r・sinθ)+(r・cosθ) = -r(sinθ-cosθ) Zr = Zx・Xr + Zy・Yr = (1)・(cosθ)+(1)・(sinθ) = sinθ+cosθ (5) z=x^2+2xy, x=r・cosθ, y=r・sinθ Zθ= Zx・Xθ + Zy・Yθ = (2x+2y)・(-r・sinθ)+(2x)・(r・cosθ) = 2{(x+y)(-r・sinθ)+x(r・cosθ)} = -2r{(x+y)(sinθ)-x(cosθ)} = -2r(x・sinθ+y・sinθ-x・cosθ) = -2r(r・cosθ・sinθ+r・sinθ・sinθ-r・cosθ・cosθ) = -2r^2(cosθ・sinθ+sinθ・sinθ-cosθ・cosθ) = -2r^2(sin^2θ+cosθsinθ-cos^2θ) Zr = Zx・Xr + Zy・Yr = (2x+2y)・(cosθ)+(2x)・(sinθ) = 2{(x+y)・(cosθ)+(x)・(sinθ)} = 2{x・cosθ+y・cosθ+x・sinθ} = 2{r・cosθ・cosθ+r・sinθ・cosθ+r・cosθ・sinθ} = 2r{cosθ・cosθ+sinθ・cosθ+cosθ・sinθ} = 2r{cos^2θ+2・sinθ・cosθ} = 2r・cosθ{cosθ+2・sinθ} 以上、よろしくお願いします。

  • 偏微分

    z = sin^2(x+y)-sin^2(x)-sin^2(y) コレを偏微分したいのですが・・・。 sin^2(x)の微分は・・sin(x)cos(x)ではないんですか?

  • 偏微分

    数学の問題なのですが、まったくわかりません。 助けてください。 次の関数の偏微分を求めよ。 f(x,y,z)= (1) 2x + 3x^2y + yz^2 + 4 (2) (2x - x^2y)(4y^3 + yz^2) (3) (cosx + 2xz) sin3y (4) 2z^4e^xy + y(sin2x)e^3x たとえば (1) では ∂f / ∂x = 2 + 6xy + yz^2 ∂f / ∂y = 2x + 3x^2 + z^2 ∂f / ∂z = 2x + 3x^2y + 2yz となるのでしょうか?? いまいち偏微分が理解できません。 できれば教えてください!!

  • 合成関数の微分

    大学1年のものです。 次のような問題に出くわしました。 Z=f(x,y) x=rcosθ y=rsinθのとき次の関係式を示せ。 Zxx+Zyy=Zrr+(1/r)Zr+{1/(r^2)}Zθθ ここで、 Zx=∂Z/∂x  Zxx=∂^2Z/∂x^2 です。(r、θについても同様) まず、 Zr=Zx・cosθ+Zy・sinθ …(1) Zθ=-Zx・rsinθ+Zy・rcosθ …(2) ですよね? ここで疑問がわきました。 (2)でrsinθ=x、rcosθ=yと置き換えるのと置き換えないのとでは、Zθθが違う思います。 そこで教科書の答えを見ると、 置き換えて微分したほうの答えが書いてあったので、 置き換えて計算しないとダメなのかと思ったのですが、 (1)においてはcosθ=x/r、sinθ=y/rと置き換えないのでしょうか? というか、教科書には置き換えないほうの結果が載っていました。 自分でもcosθは置き換えといて、置き換えた後のrがそのままなのはおかしいと思いますが、なぜrcosθを置き換えてcosθを置き換えないのかがわかりません。 質問を要約すると なぜrcosθを置き換えてcosθを置き換えないのか? ということです。 ちなみに教科書に載っていた答えは、 Zrr=Zxx(cosθ)^2+Zyy(sinθ)^2+2Zxy・sinθcosθ Zθθ=Zxx・r^2(sinθ)^2+Zyy・r^2(cosθ)^2-2Zxy・r^2・sinθcosθ-(Zx・rcosθ+Zy・rsinθ) です。 非常にわかりにくい文章だとは思いますが、教えていただければ助かります。

  • 偏微分の問題です。

    x=rsinΘcosφ,y=rsinΘsinφ,z=rcosΘのとき 1+(∂z/∂x)^2+(∂z/∂y)^2={(∂r/∂Θ)^2+(∂r/∂φ)^2/sin^2Θ+r^2}/{(∂r/∂Θ)sinΘ+rcosΘ}^2 これを示す問題なんですけど、r,Θ,φのなにか関係式があり、それを利用するのでしょうか?おねがいします。