- 締切済み
方向微分
ω=f(x、y、z)上の点(x0、y0、z0)における(cosα、cosβ、cosγ)方向への方向微分を求めよ。 (ただしベクトル(cosα、cosβ、cosγ)はx軸、y軸、z軸とのなす角がそれぞれα、β、γであるような単位ベクトル(方向余弦)である) 問題は以上です。 私の解いた回答は ω=f(x、y、z)を一次化するとdω=(∂f/∂x)dx+(∂f/∂y)dy+(∂f/∂z)dz 点(x0、y0、z0)からの方向微分なので dω=∂f/∂x(x0、y0、z0)dx+∂f/∂y(x0、y0、z0)dy+∂f/∂z(x0、y0、z0)dz となる。 よって (cosα、cosβ、cosγ)方向への方向微分= {∂f/∂x(x0、y0、z0)cosα+∂f/∂y(x0、y0、z0)cosβ+∂f/∂z(x0、y0、z0)cosγ}/√cos^2α+cos^2β+cos^2γ なのですがうまくまとまらず、もっときれいな形になるのではないかと思うのですが・・・。 どなたかアドバイスをお願いします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- nubou
- ベストアンサー率22% (116/506)
回答No.1
(cosα、cosβ、cosγ)が単位ベクトルならば cos^2(α)+cos^2(β)+cos^2(γ)=1 だから簡単になるでしょう
お礼
そうですね・・・; すみません、簡単でした。 すばやい回答ありがとうございました。