• 締切済み

合成関数の偏微分

z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

みんなの回答

  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.1

>z=f(x,y) >x=r cos(θ), y=r sinθ >∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  >∂z/∂θ = r{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 ↑合っています。 >∂z/∂r = P, ∂z/∂θ = Q >2階偏導関数 >∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r) P=g(x,y,r,θ)なので、結果は同じですが ∂P/∂r=(∂g/∂r)+(∂g/∂x)(∂x/∂r) + (∂g/∂y)(∂y/∂r)  =(∂g/∂x)(∂x/∂r) + (∂g/∂y)(∂y/∂r) であり >∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  Q=h(x,y,r,θ)なので↑は間違い。 ∂Q/∂θ=(∂h/∂θ)+(∂h/∂x)(∂x/∂θ) + (∂h/∂y)(∂y/∂θ) です。 >を求めたいのですが >∂P/∂x や  ∂Q/∂x を求めるときに >cosθ(∂z/∂x) についている cosθ や >r{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか? そうです。rもθも定数として扱います。 なので以下は考えなくてよいです。 >それとも変数とみて積の微分法を >用いればよいのでしょうか? >考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは >xで偏微分できそうですし >r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 上述の式から P=∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y) ∂P/∂x=cosθ(∂^2(z)/∂x^2)+sinθ(∂^2(z)/∂y∂x) ∂P/∂y=cosθ(∂^2(z)/∂x∂y)+sinθ(∂^2(z)/∂y^2) ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r) (=∂^2(z)/∂r^2) =(cosθ)^2(∂^2(z)/∂x^2)+sinθcosθ(∂^2(z)/∂y∂x)  +sinθcosθ(∂^2(z)/∂x∂y)+(sinθ)^2(∂^2(z)/∂y^2) =(cosθ)^2(∂^2(z)/∂x^2)+2sinθcosθ(∂^2(z)/∂x∂y)+(sinθ)^2(∂^2(z)/∂y^2) Q=∂z/∂θ=h(x,y,r,θ)=r{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} ∂h/∂x=r{-sinθ(∂^2(z)/∂x^2) + cosθ(∂^2(z)/∂y∂x)} ∂h/∂y=r{-sinθ(∂^2(z)/∂x∂y) + cosθ(∂^2(z)/∂y^2)} ∂Q/∂θ=(∂h/∂θ)+(∂h/∂x)(∂x/∂θ) + (∂h/∂y)(∂y/∂θ)(=∂^2(z)/∂θ^2) =r{-cosθ(∂z/∂x) -sinθ(∂z/∂y)} +r^2{(sinθ)^2(∂^2(z)/∂x^2)-sinθcosθ(∂^2(z)/∂y∂x)} +r^2{-sinθcosθ(∂^2(z)/∂x∂y) +(cosθ)^2(∂^2(z)/∂y^2)} =-r{cosθ(∂z/∂x)+sinθ(∂z/∂y)} +r^2{(sinθ)^2(∂^2(z)/∂x^2)-2sinθcosθ(∂^2(z)/∂y∂x)+(cosθ)^2(∂^2(z)/∂y^2)}

関連するQ&A

  • 合成関数の偏微分について

    z=f(x,y)で  x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。

  • 合成関数の微分

    大学1年のものです。 次のような問題に出くわしました。 Z=f(x,y) x=rcosθ y=rsinθのとき次の関係式を示せ。 Zxx+Zyy=Zrr+(1/r)Zr+{1/(r^2)}Zθθ ここで、 Zx=∂Z/∂x  Zxx=∂^2Z/∂x^2 です。(r、θについても同様) まず、 Zr=Zx・cosθ+Zy・sinθ …(1) Zθ=-Zx・rsinθ+Zy・rcosθ …(2) ですよね? ここで疑問がわきました。 (2)でrsinθ=x、rcosθ=yと置き換えるのと置き換えないのとでは、Zθθが違う思います。 そこで教科書の答えを見ると、 置き換えて微分したほうの答えが書いてあったので、 置き換えて計算しないとダメなのかと思ったのですが、 (1)においてはcosθ=x/r、sinθ=y/rと置き換えないのでしょうか? というか、教科書には置き換えないほうの結果が載っていました。 自分でもcosθは置き換えといて、置き換えた後のrがそのままなのはおかしいと思いますが、なぜrcosθを置き換えてcosθを置き換えないのかがわかりません。 質問を要約すると なぜrcosθを置き換えてcosθを置き換えないのか? ということです。 ちなみに教科書に載っていた答えは、 Zrr=Zxx(cosθ)^2+Zyy(sinθ)^2+2Zxy・sinθcosθ Zθθ=Zxx・r^2(sinθ)^2+Zyy・r^2(cosθ)^2-2Zxy・r^2・sinθcosθ-(Zx・rcosθ+Zy・rsinθ) です。 非常にわかりにくい文章だとは思いますが、教えていただければ助かります。

  • 偏微分・全微分を使った証明

    力学のある問題の証明で困っております。 z(x,y)   zはx,yを変数に持つ関数(式は具体的には指定されていない) x=rcosα-ssinα y=rsinα+scosα  (αは定数) の時 ∂^2z/∂x^2+∂^2z/∂y^2 = ∂^2z/∂r^2+∂^2z/∂s^2 を証明せよ。 (^2は二階微分) です。 全微分を駆使して証明するようなのですが、私のやり方では右辺を展開する途中で ∂^2z/(∂r∂x)cosα+∂^2z/(∂r∂y)sinα-∂^2z/(∂s∂x)sinα+∂^2z/(∂s∂y)cosα が出てきました。(ここまで合ってればいいのですが・・・) そうすると、sinαとcosαの係数にある微分記号の分母∂x,∂yが邪魔で、この先どう変形して良いのかわからず、左辺の式まで持っていけません。 どなたかわかりませんでしょうか? 

  • 偏微分の問題です。

    x=rsinΘcosφ,y=rsinΘsinφ,z=rcosΘのとき 1+(∂z/∂x)^2+(∂z/∂y)^2={(∂r/∂Θ)^2+(∂r/∂φ)^2/sin^2Θ+r^2}/{(∂r/∂Θ)sinΘ+rcosΘ}^2 これを示す問題なんですけど、r,Θ,φのなにか関係式があり、それを利用するのでしょうか?おねがいします。

  • 偏微分

    次の偏微分を求めよ。ただし(1)-(3)ではデカルト座標xyzを極座標rθΦの関数とし、(4)-(6)では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 (1)Δx/Δθ=rcosθ×cosΦ (2)Δy/ΔΦ=rsinθ×cosΦ (3)Δz/Δr=cosθ これでよいでしょうか・・・?? (4)Δr/Δy=y/√(x^2+y^2+z^2)=y/r (5)Δθ/Δz (6)ΔΦ/Δx (5)(6)がまったく分かりません^^;たとえば、(5)ではtanθを微分したらよいのでしょうか?? よろしくお願いします。

  • 大学の微分積分 ヤコビアンについて

    x=rsinθcosβ、 y=rsinθsinβ、 z=rcosθのとき jacobian δ(x、y、z)/δ(r、θ、β)を求めよ 一部ギリシャ文字がよめませんでした・・・ δは偏微分の意味を表しています   解説付きでお願いします! 

  • 線形写像の微分

    大学の授業で、線形写像の微分というものが出たのですが、全く理解できなかったので質問させていただきます。 このような問題が出題されました。 次のように表される線形写像Aの、R^3の各点での微分を求めよ。 A: R^3 → R^2 X=t(x,y,z) (←tは転置行列という意味です。3次の列ベクトルです。) ↓ AX (Aは、各成分が任意の実数の2行3列の行列です。) いったい何をすればいいのかわかりません。 答えは行列の形で出てくるのでしょうか? 先生は、各成分で偏微分したもの書き並べれば良いって言っていたのですが、全く理解できません・・・。 例えば、 X=rsinθcosφ Y=rsinθsinφ Z=rcosθ という写像を微分しろと言われたら、 第一行 = sinθcosφ, rcosθcosφ, -rsinθsinφ 第二行 = sinθsinφ , rcosθsinφ , rsinθcosφ 第三行 = cosθ , -rsinθ , 0 という3行3列の行列になるというのはわかるのですが・・・。 わかりにくくて申し訳ありません・・・。 よろしくお願いいたします

  • 合成関数の微分

    合成関数の微分に関する問題なのですが、  f(x,y)をx=rcosθ、y=rsinθで変数変換し、f(x,y)=g(r,θ)としたとき、 ∂f/∂x、∂f/∂yを∂g/∂r,∂g/∂θで表せ。 という問題がうまく解けません。合成関数の微分の公式を用いていけばよいと思うのですが、∂g/∂r,∂g/∂θがどうやって出てくるのかがわかりません。どなたか教えていただけませんでしょうか?よろしくお願いします。

  • 偏微分について

    偏微分をこの前習ったのですが、いまいちよく分かりません><どなたか手助けお願いいたします。 位置ベクトルrの独立変数はデカルト座標(x,y,z)で、 Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) またデカルト座標(x,y,z)、極座標(r,θ,Φ)について、デカルト座標を極座標の関数とし、または極座標をデカルト座標の関数として偏微分を行うときに、 Δx/Δθ=rcosθ×cosΦ Δy/ΔΦ=rsinθ×cosΦ Δz/Δr=cosθ でよいのでしょうか?? あと、これの逆の Δr/Δy,Δθ/Δz,ΔΦ/Δx のやり方が分かりません。 どなたかよろしくお願いいたします。

  • もう一つ偏微分の問題をお願いします

    次の写像に伴う面積体積の拡大率を求めよ。 (1) x=rcosΘ y=rsinΘ (2) r=sqrt(x^2+y^2) Θ=arctan(y/x) (3) x=rsinΘcosφ y=rsinΘsinφ z=rcosΘ