位相空間における連続写像の存在証明

このQ&Aのポイント
  • 位相空間において、連続写像g:[0,1]→T、g(0)=a、g(1)=cが存在するかどうかを検討します。
  • 連続写像φ:[0,1]→T、φ(0)=a、φ(1)=bと連続写像ψ:[0,1]→T、ψ(0)=b、ψ(1)=cが存在する中で、g(x)=φ(2x)(0≦x≦1/2)、g(x)=ψ(2x−1)(1/2≦x≦1)という連続写像を考えます。
  • 連続写像gの連続性を確認するために、g(1/2)∈Uなる開集合U⊂Tを任意に取ります。g:[0,1/2]→Tの連続性とg:[1/2,1]→Tの連続性から、それぞれの区間で連続であることが示されます。ただし、[0,1]の位相の元であるV1とV2が開集合であるかどうかは判明していません。
回答を見る
  • ベストアンサー

位相空間についての質問です。

位相空間(T,Ot)(Tは集合でOtは位相)として、a,b,cはTの元とします。 連続写像φ:[0,1]→T、φ(0)=a、φ(1)=bが存在して、 連続写像ψ:[0,1]→T、ψ(0)=b、ψ(1)=cが存在するとします。 このとき、連続写像g:[0,1]→T、g(0)=a、g(1)=cは存在するのでしょうか? もし存在するなら証明してほしいです。 自分の持ってる教科書の連続写像の定義は、 f:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔f(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、f(V)Uとなる。 と定めています。 一応、自分で考えたのは、 g:[0,1]→T、g(x)=φ(2x)(0≦x≦1/2)、g(x)=ψ(2x−1)(1/2≦x≦1)なのですが、x=1/2で連続なのかわかりません。g:[0,1/2]→T, g:[1/2,1]→Tは連続だと思います。 g(1/2)∈Uとなる開集合U⊂Tを任意に取ります。 g:[0,1/2]→Tの連続性から1/2∈V1、V1⊂[0,1/2] となる開集合が存在してg(V1)⊂Uで、 g:[1/2,1]→Tの連続性から1/2∈V2、V2⊂[1/2,1] となる開集合が存在してg(V2)⊂Uとなる事はわかります。 V1もV2も[0,1]の相対位相の元なので、V1UV2は、[0,1]の開集合となるのかわからないです。 (V1もV2も[0,1]の位相の元([0,1]の開集合)ならば、V1UV2は、[0,1]の開集合となる事はわかります。)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

そもそも [0,1]の上の(開)位相も、実数体Rの位相から誘導されたものを入れている(という前提ですね?) [0, 1/2] [1/2, 1]の上の位相も同様。 もう一度繰り返すと: g(1/2)∈ Uなる Uの開集合 U∈O[T] を勝手に取る。 今の話で、[0, 1/2]の開集合 V[1] で、1/2∈V[1]、且つ g(V[1])⊂ Uなるものがあるが、そもそも[0, 1/2]には実数体Rからの相対位相を入れていたのであるから、Rの開集合W[1]があって、 V[1] = W[1]∩[0, 1/2] となる。 同様に、[1/2, 1]の開集合 V[2] で、1/2∈V[2]、且つ g(V[2])⊂ Uなるものがあるが、同様にRの開集合W[2]があって、V[2] = W[2] ∩ [1/2, 1]となる。 W = W[1]∩W[2] はRの開集合で、1/2∈ Wである。 V= W∩[0,1] は[0,1]の開集合。これについて考えよ。 V∩[0,1/2] = W∩[0,1/2] は[0,1/2]の開集合で、 V∩[0,1/2] = W∩[0,1/2] ⊂W[1]∩[0,1/2] = V[1], 同様に V∩[1/2, 1]⊂V[2] である。

Lyhxhjeje
質問者

お礼

丁寧な解説ありがとうございます。 とても良くわかりました。 本当にありがとうございました。

関連するQ&A

  • 位相空間上の連続写像について

    (T,Ot),(S,Os)を位相空間とします。 A⊂Tに対してAは相対位相Oaによる位相空間、 B⊂Tに対してBは相対位相Obによる位相空間とします。 写像f:A→S、g:B→Sが連続写像であり、任意のa∈A∩Bについてf(a)=g(a)であるとします。 写像h:A∪B→Sを、 h(x)=f(x)(x∈A), h(x)=g(x)(x∈B) と定めるときhが連続写像である事を示していただきたいです。 特に、a∈AかつaはBに属さないとき、写像hはaにおいて連続でしょうか? 自分の持ってる教科書の連続写像の定義は、 φ:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔Φ(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、φ(V)⊂Uとなる。 と定めています。

  • 位相と連続

    何度か、このサイトで位相に関して質問をしている初学者です。 おかげさまをもちまして、理解が進んだと感じています。 さて位相の言葉を使うと、 「位相空間Yの開集合Vのfによる逆写像 f^{-1}(V)=UがXの開集合である場合、f : X→Y は連続」 などというと思いますが、この表現と通常のイメージでいうところの関数の連続/不連続とを対応させて理解を進めたいと思っています。 以下、1次元Euclid空間 X から 1次元Euclid空間 Y への写像 f : X→Yを考えます。 1)x=0でジャンプする関数(x=0で定義されている) : f(x)=x (x <= 0), f(x)=x+1 (x>0) この場合、たとえば (1/2, 3/2) のf による逆写像は f^{-1}((1/2, 3/2)) = [0, 1/2) となります。これは X の開集合ではないので、f(x)は不連続。 2)x=0でジャンプする関数(x=0で未定義): f(x)=x (x < 0), f(x)=x+1 (x>0) 【質問】 ●(1)の考え方、論証はこれで正しいでしょうか。 ●(2)を(1)のと同様の論理で考える場合、 「Yの下位集合 *** の f による逆写像 f^{-1}(***) が Xにおける開集合でないので、f は不連続」 となると思いますが、この場合 *** はどういった集合になり、どういう理屈で逆写像はXの開集合ではない、と結論付けられるのでしょうか。 (x=0で定義されていないので、Xの位相がいわゆる1次元Euclid位相ではない?) 以上、ご教示よろしくお願いします。

  • 位相空間における連続写像の条件について

    (X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。

  • 位相空間のコンパクト化の問題で困っています。

    最初に問題と回答を写します (X,〇)、(X',〇')、(X'',〇'') をそれぞれ 〇, 〇', 〇''を開集合系とする位相空間 f:X→X' g:X'→X'' を連続写像とする 問:Y⊂X がコンパクトであるとき f(Y) がコンパクトになることを証明せよ 答:ц={U(λ)|λ∈Λ} を f(Y) の開被覆とすると f が連続写像であることより ц'={f^(-1)・(U(λ)) |λ∈Λ} は Y の開被覆となる Y はコンパクトであるから,ある ц' の部分被覆 {f^(-1)・(U(λ1))、f^(-1)・(U(λ2))、…、f^(-1)・(U(λn))} が存在する。このとき {U(λ1)、U(λ2)、…、U(λn)} が ц の部分被覆になるのは容易に分かるので f(Y) はコンパクト ■ この最後のところで、どうして {U(λ1)、U(λ2)、…、U(λn)} が цの部分被覆になるのかが分からないので教えて欲しいです。 よろしくお願いします。別解などありましたら歓迎です。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 位相と連続の証明問題で質問です。

    識者の皆様よろしくお願い致します。下記の問題について質問です。 Let A be a set;let {X_α}_α∈J be an indexed family of spaces;and let {f_α}_α∈J be an indexed family of functions f_α:A→X_α. (1) Show there is a unique coarsest topology T on A relative to which each of the fuctions f_α is continuous. (2) Let S_β:={f_β^-1(U_β); U_β is open in X_β},and let S=∪S_β. Show that S is a subbasis for T. (3) Show that a map g:Y→A is continuous relative to T if and only if each composite map f_α。g is continuous. (4) Let f:A→ΠX_α be defined by the equation f(a)=(f_α(a))_α∈J ;let Z denote the subapace f(A) of the product space ΠX_α.Show that the image under f of each element of T is an open set of Z. 「Aを集合とし,{X_α}_α∈Jを添数付けられた(位相?)空間の族とし,{f_α}_α∈Jを添数付けられた写像f_α:A→X_αの族とせよ。 (1) 各f_αが連続となる事に関連したA上の最強位相Tが一意的に存在する事を示せ。 (2) S_β:={f_β^-1(U_β);U_βはXでの開集合},そしてS=∪S_β…(*)とする時,SはTの準開基となる事を示せ。 (3) 写像g:Y→AがTに関して連続⇔各合成写像f_α。gは連続。 (4) f:A→ΠX_αをf(a)=(f_α(a))_α∈J; Zは直積空間ΠX_αのf(A)の部分空間を表す。Tの各元のfの像はZの開集合になる事を示せ。」 (1)については各f_αが連続だというのだから∀t_α∈T_α(但しT_αはX_αの位相),f_α^-1(t_α)はAの開集合(…という事はAは何らかの位相を持っている?その位相をTとしておく)。f_α^-1(T_α)⊂Tになっていなければならない(∵連続の定義)。 よってT=∪[α∈J]{f_α^-1(t_α)∈2^A;t_α∈T_α}…(ア)と書け、TはAの最強の位相だというのだからAの任意の位相は全てTより弱い。 よってTは離散位相にならねばならない? それでT=2^Aを示せばいいのかと思いました。T⊂2^Aは明らかなのでT⊃2^Aを示します。 ∀G∈2^Aを採ると、、、ここからどのように書けますでしょうか? (2)については今,S=∪[β∈J]S_β={s∈2^A;∃β∈J such that s∈S_β}…(**)となっていて, ∪[s∈S]s=Tとなる事を示せばよい(∵準開基の定義)。 ∪[s∈S]s⊂Tを示す。 ∀s∈Sを採ると(*)より,∃β∈J;s=f_β^-1(U_β).よってこれは(1)でのTの元になっているのでs∈T. ∪[s∈S]s⊃Tを示す。 ∀t∈Tを採ると∃β∈J;t=f_β^-1(t_β) (但し,t_β∈T_β)(∵(ア)) よってS_βの定義(S_β:={f_β^-1(U_β);U_βはXでの開集合})からf_β^-1(t_β)∈S_β. よって(*)よりf_β^-1(t_β)∈∪[s∈S]s(∵(**)). 以上より T=∪[s∈S]s. で大丈夫でしょうか? (3)については "⇒"は連続写像同士の合成はまた連続なので明らか。 よって逆を示す。 まずf_α。g:Y→X_αは連続だと言うのだから∀t_α∈T_α,(f_α。g)^-1(t_α)∈T_y (但し,T_yはYの位相)…(***)と書ける。 そしてこれは(f_α。g)^-1(t_α)=g^-1(f_α^-1(t_α)) (∵逆写像の定義)と変形でき, f_α^-1(t_α)∈T_α⊂Tだったので纏めると,,(***)から ∀f_α^-1(t_α)∈T,g^-1(f_α^-1(t_α))∈T_yと書け、gは連続。 (4)についてはf(a)=(f_1(a),f_2(a),…)となっていて Z(⊂f(A))の位相はT_z:={f(A)∩t_p∈2^ΠX_α;t_p∈T_p} (但しT_p:={U[u∈U];U⊂ΠT_α}) と書ける(∵相対位相の定義)。 それで示す事は∀t∈T,t∈T_zである。 ∀t∈Tを採ると∃α∈J;t∈T_αそして,f(t)=(f_1(t),f_2(t),…)となり,今f(t)∈f(A)なので f(t)∈T_zである事を示すにはf(t)∈t_pである事を示せばよい。 でこれらも大丈夫でしょうか?

  • 位相空間の問題についてです。

    位相空間の問題についてです。 (1)開写像だが閉写像ではなく、連続でもない (2)閉写像だが開写像ではなく、連続でもない (3)開写像でも閉写像でも連続でもない (1)~(3)それぞれの条件を満たす位相の写像の例はそれぞれどんなものがありますか。もし写像が存在しない場合は、その証明を記して頂けると助かります。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。