• ベストアンサー
  • 困ってます

有限集合からなる位相空間における写像の連続性

ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数159
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • tmpname
  • ベストアンサー率68% (191/278)

そんなことはないですよね? 例えば2点集合 A={1,2}に密着位相をいれたものをX、離散位相をいれたものをYとし、XからYへの写像fを恒等写像とすれば、Aの部分集合{1}はYの開集合ではあるけど、Xの開集合ではないので、fは連続でないですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。離散位相を入れると写像は連続になるけれど、密着位相だと、密着位相からの写像が連続にならない場合があるんですね。

関連するQ&A

  • 位相空間の本で

    読んでいてあまりわからない所が2点ありまして、 1.XにXのすべての部分集合を開集合とする位相を入れると、   Xの部分集合Cがコンパクト ⇔ Cが有限集合 という部分と、 2.Xをコンパクトハウスドルフ空間、Yをハウスドルフ空間とするとき、   写像f:X→Yが全単射連続なら逆像f-1:Y→Xも連続になる という部分に疑問が残りました。 1.については、コンパクト⇒閉集合であることや、Cが有限集合なら有限個の開被覆で覆えるからコンパクトである、ということが使える(?)のではじめの「XにXのすべての部分集合を開集合とする位相を入れる」部分が必要ないのではないかとも思うのですが・・・ 2.については、Xがコンパクトハウスドルフ空間ならその部分集合Cもコンパクトでその写像はやっぱりコンパクトで・・・その逆像もコンパクトで・・・・? どこから連続の議論に持っていけばよいのかが分かりませんでした。 「証明は読者に委ねよう」というお得意の言い回しで飛ばされてしまっていて、なんだか消化不良のままです>< ご返答よろしくお願い致します。

  • 位相空間について

    次の問題がわかりません。。 実数の集合Rにおいて、次の部分集合族Oを考える。 まずR,φ∈Oである。 U≠R,φのとき、U∈O⇔U=R-A(A:有限集合)と定義する。 (1)Oが開集合系であることを示せ (2)写像f:(R,O)→(R,O) f(x)=x^2は連続であることを示せ。 (3)写像g:(R,O)→(R,O) g(x)=sin x は連続ではないことを示せ。 (1)については ()R、φ∈Oは定義よりOK ()U1、U2∈O⇒U1∩U2∈Oは無限集合の積集合は無限集合 ()Wλ∈O⇒∪Wλ∈Oは無限集合の和集合は無限集合 な感じでよろしいでしょうか? (2)はf(x)に値域が0≦f(x)≦∞であるから任意のU∈Oに対してf‐1(U)は無限集合 (3)はg(x)の値域が-1≦g(x)≦1であるから任意のW∈Oに対してg‐1(W)は有限集合 みたいな感じでよろしいのでしょうか? 解答や書き方がわからなくて困ってます・・・

  • 位相による写像が連続かどうかの問題です。

    位相による写像が連続かどうかの問題です。 (X,Qx),(Y,Qy):位相空間 写像f:X→Yが連続 ⇔任意のU∈Qyに対して,f^-1(U)∈Qx―(1) R^m:m次元数空間 Q^(m):R^mの開集合全体のなす集合族 X=(R^m,Q^(m)) Y=(R^n,Q^(n)) とすると f:R^m→R^nが(1)の意味で連続 ⇔任意のx∈R^m,任意のε>0,δ(存在する)>0,s,t f(N(x,δ))⊂N(f(x),ε) を証明せよ。 わかる方いましたらどうかよろしくお願いいたします<(_ _)>

  • 位相空間における連続写像の条件について

    (X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 可測空間と位相空間の関係

    基本的なことだと思うのですが、どうしてもわからず質問させて頂きます。 測度論を勉強しているのですが、可測空間と位相空間の関係がわかりません。 非空な集合Xを用いて、そのσ代数Σと開集合系τをそれぞれ定義します。 そうするといずれもφとXを含み、(ド・モルガンの法則を用いて)有限のunionにもとじ、任意のunionにも閉じているので、同じようにみえます。 テキストを見ると、位相の構造の入ったσ代数をボレルσ代数としていますが、ボレルσ代数にならないσ代数が存在しない気がします。 初歩的なことかもしれなく恐縮ですが、教えていただければと思います。

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 連続関数の定義に関して(位相空間)

    「定義 (X、O_X)、(Y、O_Y)を位相空間とする。写像f:X→Yが連続であるとは、U \in O_Y→f~(-1)(U)\in X を満たすことである。(ただし、A\in Bは、AがBに含まれているという意味とする)」 と”連続”の定義が位相空間論の本には載っていて、この定義がε&#65293;δ論法での連続の定義と同じであることが一般に言われていますが、どうして位相空間論における連続の定義では、f^(-1)の存在を特に何の指定もなく認めてしまっていいのか、その辺りがよくわかりません。もしもわかっている方がいらっしゃれば、お教えいただけないでしょうか?

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 位相空間の問題についてです。

    位相空間の問題についてです。 (1)開写像だが閉写像ではなく、連続でもない (2)閉写像だが開写像ではなく、連続でもない (3)開写像でも閉写像でも連続でもない (1)~(3)それぞれの条件を満たす位相の写像の例はそれぞれどんなものがありますか。もし写像が存在しない場合は、その証明を記して頂けると助かります。