• ベストアンサー
  • すぐに回答を!

集合と位相

(1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数1007
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

(1)については No.1 さんのおっしゃるとおり. 蛇足をつけるなら >U×Vが上の定義から (a, b) の近傍であり (U×V)∩(A×B)=φ よって, (A×B)^c ⊃ U×V ・・・(*) (a,b)をA×Bの補集合全体を動かすことで (A×B)^c ⊃ ∪(U×V) 一方, (A×B)^c ⊂ ∪(U×V) は明らかなので (A×B)^c = ∪(U×V) となり,A×Bは閉集合 #もっとも,(*)の段階で開近傍がとれてるから開集合ですけど #定義にもどして書くならこんな感じ. #初学者のようですので,この流れは知っておくほうがよいでしょうね (2)については >∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから この時点ですでに駄目です. 直積空間と和集合がごっちゃになってます. 一般の直積空間が分かりにくいのであれば もっと限定したシンプルなもので練習してください. たとえば,R^2 (実二次元空間)は実数Rをつかって R^2 = R × R です これを念頭において,(2)の問題をやさしく書き直すと Rの部分集合AとBについて cl(A×B)=cl(A)×cl(B) を示せとなります. 質問者の論法だと ∀x∈cl(A)×cl(B)を取る。 x∈cl(A)またx∈cl(B)であるから となりますが,x=(a,b)と書けるので,おかしいですよね. これは,aの任意の近傍Uとbの任意の近傍Vをとると U∩A≠φ,V∩B≠φ, したがって,(U×V)∩(A×B)≠φ ここで,xの任意の近傍はU×Vの和集合で表せる・・・(**) ので,xはcl(A×B)の元 なんて流れになります. (**)が理解できないということが「生成する位相」という定義が 理解できていないということに相当します. 反対側の包含関係についても同様の間違いがあります. (b)の問題については・・・・ 問題そのものが納得できません. 全部のAλに対して,IntAλ≠φでもいいのでは? どちらにしろ, もう少し直積空間に慣れてからの問題でしょう #というか。。先生なり友達に聞くほうが現実的でしょう.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 位相

    X を位相空間,Y をコンパクト位相空間とする.このとき, (1) U を直積位相空間X × Y の開集合としたとき, A = { x | {x} ×Y ⊂ U } はX の開集合であることを示せ. これを解くためのヒントをください。 Aに含まれる任意の点 x1のある近傍がAに含まれることをしめすんですね。そのような近傍をどうとればいいんでしょうか。

  • 集合・位相

    集合・位相初心者です。 授業で開集合と閉集合、近傍の定義を教えてもらったのですが、理解できず、困っています。 以下は、授業で使っているプリントに載っている定義です。 X:集合 T:Xの部分集合からなる集合族 (X,T):位相空間 とする。 Xの部分集合UがTの元であるとき、Uを開集合という。 また、Xの部分集合Fの補集合がTの元であるとき、Fの閉集合という。 点x∈Xに対して x∈U゜ を満たすXの部分集合Uを近傍という。また、このような近傍全体のなす集合族をxの近傍系といい、U(x)で表す。 具体的な例で教えて頂けると助かります。 例えば、集合X={1,2,3,4,5}、位相T={φ,{3},{4},{3,4},{1,3},{1,3,4},X}として、位相空間(X,T)をつくると、この(X,T)の開集合、閉集合、点3の近傍(点は適当に選びました)はどうなるのか。 集合・集合は初心者なので、詳しく教えて頂けると嬉しいです。 ご教授、よろしくお願い致します。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

その他の回答 (2)

  • 回答No.3
  • koko_u
  • ベストアンサー率12% (14/116)

kabaokaba>(b)の問題については・・・・ kabaokaba>問題そのものが納得できません. 無限個の直積空間 P=Π_{λ∈Λ}X_λ には普通すべての射影 p_λ : P -> X_λ が連続となるような「最小」の位相を入れるので設問の通りで良いはずです。 開集合の族 U_λに対して Π_{λ∈Λ}U_λ が開集合になるほど「強い」位相は入っていないかと。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • koko_u
  • ベストアンサー率12% (14/116)

>A,BがそれぞれX,Yの開集合であるとき きっと「閉集合」の間違いとして。。。 >Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 Цx×Цy をサブセットとして含む最小の位相という意味です。もちろん、教科書には「最小」が存在する証明も書かれていたはずです。 直感的にはЦx×Цyの要素O_a1×O_a2とO_b1×O_b2の和集合も開集合で、さらに別のO_c1×O_c2との和集合も開集合で…と繰り返していって得られる位相空間ですが、集合論的にはそのような可算的な操作では厳密な実体を得ることはできません。 >また位相を「入れる」ということはどういう意味なのでしょうか? まんま、集合 X に対して位相空間の定義を満たす開集合の族 U を持ってきて、(X, U)が位相空間だと宣言すること。 (1)は定義に沿ってやるなら、A×Bに含まれない点 (a, b) に対して、a、b各々の近傍を U、Vを各々A、Bと交わらずに取れるので、U×Vが上の定義から (a, b) の近傍であり (U×V)∩(A×B)=φ それ以降の問題は読んでないのでパス

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 位相を入れるって本当にそのまんまなんですね…。

関連するQ&A

  • 直積位相

    X、Yを位相空間とする。 『W⊂X×YがX×Yの開集合⇔任意の(x,y)∈Wに対して、x∈XのXにおける開近傍U⊂X、y∈YのYにおける開近傍V⊂YでU×V⊂Wとなるものが取れる』 と定義することにより、X×Yは位相空間になる事を示せ。 という問題です。 X、Yが位相空間なので、それぞれの位相をO(X)、O(Y)としてX×Yの位相をO(X×Y)={Uλ×Vλ;Uλ∈O(X)、Vλ∈O(Y)}とおいて証明しようとしたのですが、これでは上記の定義が満たされていないと注意され詰まってしましました。 どなたかアドバイス(もしくは証明)していただけませんでしょうか?

  • 位相 初心者です。

    「AとBが位相空間Xの開集合ならば、A×Bは直積位相空間X^2の 開集合である。」 上記の内容は、定義ですか、それとも定理ですか。 定理であれば、証明の考え方を教えてください。

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 位相についてのご質問です。

    位相について質問です。 「集合Sの部分集合族Kが (1)O(空集合)、SがKに含まれる (2)集合A,BがKに含まれるならAとBの共通集合もKに含まれる。 (3)任意のKの元Fmに対してFmの全和集合もKに含まれる。 以上を満たす時,KはSに位相を与えるといい(S,K)を位相空間という。 そして、Kの元を開集合といいKを開集合系という。」 このKの元を開集合といいという所からさっぱり分かりません。 どこがどう開集合なんですか? 例えばS={1,2,3}とすればK={O,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} となってこれは(1)から(3)を満たすので(S,K)は位相空間でKの元は開集合にもなってないと思うのですが。

  • 直積位相定義が2個の直積の場合に合致してるか?

    直積位相の定義についての質問です。 [定義ア]位相空間(X_λ,T_λ) (λ∈Λ(Λは任意の添数集合))と射影fが与えられていて,直積集合P:=ΠX_λとおく。 この時,X_λ⊃{f_λ^-1(t_λ)∈2^P;t_λ∈T_λ}=:S_λをf_λによって誘導される(X_λ,T_λ)の位相と呼ぶ。 次に和集合B:=∪S_λと置き, この時,このBから生成される位相{U∈2^P;∀x∈U,∃b∈B such that x∈b⊂U} を直積集合Pの直積位相と呼ぶ。 が直積位相の定義だと思います。 [定義イ]2個の直積(X_1,T_1)×(X_2,T_2)の場合の直積位相は{∪[g∈G]g ;G⊂T_1×T_2}と載ってました。 [定義ウ]集合Xの部分集合族Bが以下の条件を満たすときBをXの開基という (1)BはXを被覆する (2)任意のb1,b2∈Bおよび任意のx∈b1∩b2に対して、あるb∈Bが存在して、x∈b⊂b1∩b2となる。 [定義エ] Bを集合Xの開基とする時,{U∈2^X;∀x∈U,∃b∈B such that x∈b⊂U}をBによって生成される位相という。 そこで定義アの直積位相定義が2個の直積の場合に定義イと合致してるか調べています。 まずS_1={f_1^-1(t_1);t_1∈T_1},S_2={f_2^-1(t_2);t_2∈T_2}でB:=S_1∪S_2と置く。 そしてこのBによって生成される位相は{U∈2^(X_1×X_2);∀x∈U,∃b∈B such that x∈b⊂U}:=L これが{∪[g∈G]g;G⊂T_1×T_2}:=Mに一致してるか吟味してみます。 (i) L⊂Mを示す。 ∀U∈Lを採ると,∀x∈Uに対してx∈b⊂Uなるb∈Bが存在する。 Bの定義よりb={f_1^-1(t_1),f_2^-1(t_2)}という集合になっています。 そこで結局の所,Uは常にbを含んでいなければならない訳ですからU=∪[b∈B']b (但しB'⊂B)…(1)となっていますよね。 所でBの元達はというとB:=S_1∪S_2な訳ですから(1)は U={(t_1×x_2)∪(x_1×t_2);x_1⊂X_1,x_2⊂X_2}という形になってますよね。 ここでx_1やx_2は必ずしもT_1やT_2の元とは限らないわけですよね。 なのでこのUは∪[g∈G]g;G⊂T_1×T_2には含まれませんよね。 どうすればLとMが合致しますでしょうか? それとも直積位相は2個の直積集合の場合と3個以上の直積集合の場合とでのそれぞれ直積位相の概念は異なるのでしょうか?

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 位相

    数学科2年のものです。 位相空間についての授業が始まったのですが、演習問題で、わからない問題があります。 初歩的な問題かもしれませんが、どなたか解答お願いします。 集合S={1,2,3,4}に部分集合族Lを L={Φ、{1}、{1,2}{1,3}{1,2,3}、S} により与える。Sの部分集合{1,2,4}をTとおく。 (1)(S,L)は位相空間であることを示せ。 (2)位相空間(S、L)においてTの内部を求めよ。 (3)位相空間(S、L)においてTの閉包、境界を求めよ。 特に(1)の位相空間の定義の、「Lに属する任意個の和集合がLに属すること」の確認の仕方に自信がないので、お願いします。

  • 位相空間・直積空間

    はじめまして。 数学科の学生です。 位相空間のテストを間近に控え勉強しています。 「集合と位相」 鎌田正良著 P107[3-4] A1を位相空間X1の部分空間とし、A2を位相空間X2の部分空間とすると、直積空間A1×A2は直積空間X1×X2の部分空間を示せ。 この問題が分かりません。 相対位相と直積空間を使うというのは分かるのですが、 直積空間の定義自体がしっくりきません。 どなたかお力をお貸しください。

  • 集合と位相の問題です。コンパクトについてなんですが良かったら回答お願いしますm(__)m

    コンパクトの定義です。 『位相空間Xの任意の開被覆 {K_α}α∈A の中から 有限個の開集合 K_1、・・・・・、K_m をうまく選んで、 X=K_1∪・・・∪K_m となるとき、Xはコンパクトであるという』 (1)このコンパクトの定義で重要な部分を指摘して下さい。 (2)Rはコンパクトではないことを示して下さい。 よろしくおねがいしますm(__)m

  • 位相空間論について質問です.

    位相空間論について質問です. A⊂R^nのとき,x∈R^nが集合Aの集積点であることの定義ですが, (i)xを含む任意の開集合Uに関して,(U\{x})∩A≠Φ (ii)(A\{x})∩B(x,ε)≠Φ の2通りを見かけました.B(x,ε)はxのε近傍です. 学校の講義では(i)を習ったのですが,個人的には(ii)の方がわかりやすくて使い易いです. (i)の方がいまいちイメージが掴めません. (i)と(ii)は同じことだと思うのですが,(i)についてわかり易い解説をお願いできますか? 任意の開集合というものが入ってくるとわかりづらいです. よろしくお願いします.