- ベストアンサー
- 困ってます
集合と位相
(問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。
- blue_green_star
- お礼率37% (3/8)
- 回答数1
- 閲覧数52
- ありがとう数1
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- kabaokaba
- ベストアンサー率51% (724/1416)
(1)は完全な間違えです. 位相の定義にしたがってきちんと Tが位相の条件を満たしていることを示しましょう. (2)「最小の位相」という言葉の意味を確認して 「連続となる任意の位相」とTの関係を示しましょう.
関連するQ&A
- 集合と位相
(問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。
- ベストアンサー
- 数学・算数
- 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を
「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。
- ベストアンサー
- 数学・算数
- 位相空間における連続写像の条件について
(X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。
- ベストアンサー
- 数学・算数
- 位相数学の証明問題です。
位相数学の証明問題です。 以下の証明を,どなたか分かる方,お願いします。 R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ。 ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう。
- 締切済み
- 数学・算数
- 位相数学の証明問題です.
以下の証明を,どなたか分かる方,お願いします. (1)R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ. (2)R^2とR^2 - { (0,0) }(原点を除いた平面)は同相(※)でないことを示せ. ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう.
- ベストアンサー
- 数学・算数
- 有限集合からなる位相空間における写像の連続性
ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。
- ベストアンサー
- 数学・算数
- すみませんもう1問お願いします
位相空間の質問です (X,O)を位相空間、A⊂Xを空でないコンパクト集合とする。任意の実数値連続写像 f:A→R^1はA上で最大値と最小値をもつことを 示したいです。教えてください
- 締切済み
- 数学・算数
質問者からのお礼
ありがとうございます。一度閉めます。