• ベストアンサー
  • すぐに回答を!

「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数94
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • rinkun
  • ベストアンサー率44% (706/1571)

1. φ∈Tは、f^-1(φ)=φから。 X∈Tは、f^-1(Y)=Xから。(fは写像だからXのどの元の像もYに入る) 2. X上に適当な位相Vを取って、Vでfが連続という条件からT⊆Vを示す。 まあ自明ですが。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

1番に関しては、そもそも 全射の定義を勘違いしていたようです。 2番は 教えて頂いたやりかたで 証明できました。 お礼が遅れてすみませんでした。 おかげさまで 解答を作れそうです。 ありがとうございました。

質問者からの補足

迅速な回答ありがとうございます。 今 考え中です。また二、三日したら ご返答したいと思います。(すみません 今 やらなければならないことが多すぎて・・・)

関連するQ&A

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 位相空間への全射について

    位相空間への全射について 位相空間と写像について学習している者です。 質問させていただきます。 -- 集合Xから位相空間(Y,μ)への全射fがあるとき、 Т = {(1/f)(U)|U∈μ}とおくとき、ТがX上の位相であることを証明せよ。 ※(1/f)はfの逆関数を示します。 -- これを証明したいのですが、道筋が見えません。。。 ご教授よろしくお願いいたします。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 位相空間の定義に関する疑問

    位相空間の定義: 集合Sが次の条件を充たす集合族をもつとき「位相空間」とよぶ 1. 空集合と、S自体がその集合族に属する 2. 集合族に属する集合の交わりが集合族に属する 3. 集合族に属する無限個の集合の和集合が集合族に属する というのがありますが、1番目の条件は当然として、2番目と3番目の条件で、どうして2は有限個の集合の交わりで定義され、3だけが無限個の集合の和集合で定義されているのかわかりません。例えば、2の条件を「集合族に属する無限個の集合の交わりが集合族に属する」と書き換えるのはどうしてだめなんでしょうか?(具体的に、ちょうど良い例などが浮かばずに困っています。)

  • 位相空間の収束の問題

    fを位相空間Xから実数Rへの連続写像、A⊂Xとする。任意のx∈Aに対して、f(x)=0のとき、任意のx∈A'(A':Aの閉包)に対して、f(x)=0であることを示したいのですが…よくわかりません。 A'がAの閉包ということは、A'はAを含む最小のXの閉集合なので、今の条件のとき、A'についてもf(x)=0が言えるのかな…ということはわかるのですが、きちんと文章にして示すことができません。 回答よろしくお願いします。。。

  • 位相空間における連続写像の条件について

    (X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。

  • 集合と位相

    位相空間X、Yの間の2個の連続写像が稠密な部分集合の上で一致すれば2個の写像は等しい。という命題なのですがYがハウスドルフ空間という条件がないので正しくないということまではわかりました。あと反例も探しているのですがイメージがよくわかなくて反例がわかりません。X、Yと二個の連続写像それぞれに具体的なものを当てはめるのですか?助けてください

  • 位相空間についての質問

    次の集合論・位相空間論の問題が分かりません。教えていただけると嬉しいです。 (X,d)を距離空間f:X→Xを連続写像とする。 {K_n}(n≧1)を空でないコンパクト集合の列で f(K_n)⊃K_(n+1)が全てのn∈Nについて成立するとする。 このとき空でないコンパクト集合Kでf(K)=Kとなるものが存在することを示せ。

  • 商空間における全射について

    商空間の定義で出てくる、『全射』がよくわかりません。 内田伏一著、集合と位相の96ページに、定義として、 (X,O)を位相空間とし、f:X→Yを集合XからYへの全射とする。集合Yの部分集合族O(f)を O(f)={H∈B(Y)|f^(-1)(H)∈O} によって定義する。 とあるのですが、ここでf^(-1)の逆写像の存在を認めていますよね?しかし、fは全単射ではなく、全射としか仮定がついていないのに、この逆写像は存在することにしてしまっていいのでしょうか?? すごく初歩的なことかもしれませんが、アドバイスお願いします。