• ベストアンサー
  • すぐに回答を!

集合と位相

位相空間X、Yの間の2個の連続写像が稠密な部分集合の上で一致すれば2個の写像は等しい。という命題なのですがYがハウスドルフ空間という条件がないので正しくないということまではわかりました。あと反例も探しているのですがイメージがよくわかなくて反例がわかりません。X、Yと二個の連続写像それぞれに具体的なものを当てはめるのですか?助けてください

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数359
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • naruse
  • ベストアンサー率43% (13/30)

反例を作るには試行錯誤が時には必要で非常に困難が伴う場合もあります。その一方で明らかに条件を満たさない極端な場合を想定さえすればそれが反例になっている(きゃほ!ラッキー)というケースもままあります。 X=Y=R としましょう。ただし、X, Y の位相はともに密着位相と呼ばれるものとします。そうすると、X から Y への任意の写像は連続となります。また、1点集合{0}は X の稠密な部分集合(の1つ)です。この設定のもとで、f:X→Y, g:X→Y として f はいわゆる恒等写像 f(x)=x, g はいわゆる定値写像 g(x)=0 とすれば f と g は X の稠密部分集合{0}で一致していますが f≠g です。 # 写像(=関数)のイメージを掴み易いように X=Y=R としましたが本質的ではありません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

極端な例を考えるのですね。とてもわかりやすいです!!ありがとうございました☆

関連するQ&A

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 写像の一致とは??

    f,gを位相空間SからRへの(実数値)連続写像とする。 Sが距離空間と仮定して、Sの至るところ稠密な部分集合D上でfとgが一致するなら(つまりf|_D=g|_D)、fとgはS上全体で一致する(つまり同じ写像)を示せ。また一般の位相空間に対しても成り立つことを示せ。 この問題で、写像の一致とはなにをしめせばいいか、どのように用いればいいのかわかりません。教えてください。

  • 位相空間における連続写像の条件について

    (X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。

その他の回答 (1)

  • 回答No.1
  • rinkun
  • ベストアンサー率44% (706/1571)

昔のことでよく覚えていないが、この手の反例は位相空間の入門書に練習問題として書いてあったと思う。 教科書はあるでしょうから、関連する章の練習問題をチェックしてみると良いでしょう。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。教科書の練習問題は証明ばっかりでこのような問題はなかったです

関連するQ&A

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 位相数学の証明問題です。

    位相数学の証明問題です。 以下の証明を,どなたか分かる方,お願いします。 R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ。 ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう。

  • 位相数学の証明問題です.

    以下の証明を,どなたか分かる方,お願いします. (1)R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ. (2)R^2とR^2 - { (0,0) }(原点を除いた平面)は同相(※)でないことを示せ. ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう.

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相の問題です。

    位相の問題です。 X:位相空間 X^2:積空間 A:X^2の部分空間 A= {(x,x)∈X^2 | x∈X}とXは同相である事を示せ。 写像 f:X→A とするとf:x→(x,x) (x∈X) と置けば明らかに全単射なのですが fもf^-1連続写像である事をどう証明するのかわかりません。 分かる方いましたらよろしくお願いいたします <(_ _)>

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 集合・位相

    集合・位相初心者です。 授業で開集合と閉集合、近傍の定義を教えてもらったのですが、理解できず、困っています。 以下は、授業で使っているプリントに載っている定義です。 X:集合 T:Xの部分集合からなる集合族 (X,T):位相空間 とする。 Xの部分集合UがTの元であるとき、Uを開集合という。 また、Xの部分集合Fの補集合がTの元であるとき、Fの閉集合という。 点x∈Xに対して x∈U゜ を満たすXの部分集合Uを近傍という。また、このような近傍全体のなす集合族をxの近傍系といい、U(x)で表す。 具体的な例で教えて頂けると助かります。 例えば、集合X={1,2,3,4,5}、位相T={φ,{3},{4},{3,4},{1,3},{1,3,4},X}として、位相空間(X,T)をつくると、この(X,T)の開集合、閉集合、点3の近傍(点は適当に選びました)はどうなるのか。 集合・集合は初心者なので、詳しく教えて頂けると嬉しいです。 ご教授、よろしくお願い致します。

  • 位相空間の本で

    読んでいてあまりわからない所が2点ありまして、 1.XにXのすべての部分集合を開集合とする位相を入れると、   Xの部分集合Cがコンパクト ⇔ Cが有限集合 という部分と、 2.Xをコンパクトハウスドルフ空間、Yをハウスドルフ空間とするとき、   写像f:X→Yが全単射連続なら逆像f-1:Y→Xも連続になる という部分に疑問が残りました。 1.については、コンパクト⇒閉集合であることや、Cが有限集合なら有限個の開被覆で覆えるからコンパクトである、ということが使える(?)のではじめの「XにXのすべての部分集合を開集合とする位相を入れる」部分が必要ないのではないかとも思うのですが・・・ 2.については、Xがコンパクトハウスドルフ空間ならその部分集合Cもコンパクトでその写像はやっぱりコンパクトで・・・その逆像もコンパクトで・・・・? どこから連続の議論に持っていけばよいのかが分かりませんでした。 「証明は読者に委ねよう」というお得意の言い回しで飛ばされてしまっていて、なんだか消化不良のままです>< ご返答よろしくお願い致します。

  • 位相数学の証明問題です。

    直積集合では、2つの射影写像px:X×Y→Xおよびpy:X×Y→Yがpx(x,y)=x、py(x,y)=yで定義できる。 X、Yが位相空間(X、Ox)、(Y、Oy)であるとき、上に述べた直積位相は、px、pyの双方を連続写像とするようなX×Y上の位相のうち、もっとも弱い位相である ことを証明してください。 よろしくお願いします。

  • すみませんもう1問お願いします

    位相空間の質問です (X,O)を位相空間、A⊂Xを空でないコンパクト集合とする。任意の実数値連続写像 f:A→R^1はA上で最大値と最小値をもつことを 示したいです。教えてください