位相空間上の連続写像について

このQ&Aのポイント
  • 位相空間上の連続写像についての要約文1
  • 位相空間上の連続写像についての要約文2
  • 位相空間上の連続写像についての要約文3
回答を見る
  • ベストアンサー

位相空間上の連続写像について

(T,Ot),(S,Os)を位相空間とします。 A⊂Tに対してAは相対位相Oaによる位相空間、 B⊂Tに対してBは相対位相Obによる位相空間とします。 写像f:A→S、g:B→Sが連続写像であり、任意のa∈A∩Bについてf(a)=g(a)であるとします。 写像h:A∪B→Sを、 h(x)=f(x)(x∈A), h(x)=g(x)(x∈B) と定めるときhが連続写像である事を示していただきたいです。 特に、a∈AかつaはBに属さないとき、写像hはaにおいて連続でしょうか? 自分の持ってる教科書の連続写像の定義は、 φ:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔Φ(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、φ(V)⊂Uとなる。 と定めています。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.4

要はXを位相空間、Y⊂Xとして、YにXから相対位相を入れた時、 ◯ A⊂ YがYの閉集合 ⇔ あるXの閉集合 Bが存在し、A=B∩Yとなる という事ですが、一度自分で証明してみてください。 というか、こことかに書いてありますけどね https://math.jp/wiki/%E4%BD%8D%E7%9B%B8%E7%A9%BA%E9%96%93%E8%AB%966%EF%BC%9A%E7%9B%B8%E5%AF%BE%E4%BD%8D%E7%9B%B8#.E5.91.BD.E9.A1.8C_6.6_.28.E7.9B.B8.E5.AF.BE.E4.BD.8D.E7.9B.B8.E3.81.AB.E9.96.A2.E3.81.99.E3.82.8B.E9.96.89.E9.9B.86.E5.90.88.29 (うまくリンクが生成されないかもしれないけど、最後までコピペすれば表示できます)

Lyhxhjeje
質問者

お礼

回答者様のおかげで、やっと理解できました。 何度も回答してくれてありがとうございます。 とても感謝しています。 回答ありがとうございました。

その他の回答 (3)

回答No.3

ついでに書いておこう。 一般に連続写像を「貼り合わせて」、一つの連続写像にしたい場合は、次の命題が使える: http://www.f.waseda.jp/taniyama/lectures/twcu/pasting-maps.pdf https://en.wikipedia.org/wiki/Pasting_lemma https://okwave.jp/qa/q10106999.html の場合は、[0,1/2]も[1/2, 1] も [0,1] の閉集合であるから、この貼り合せの命題の成立条件を満たす。 一方、この質問の反例で書いたものでは、 ◯ 有理数全体、無理数全体ともに、実数体Rの開集合でも閉集合でもない ◯ 非負実数全体は閉集合であるが開集合でなく、一方負の実数全体は開集合であるが閉集合ではない となっていて、この貼り合わせの命題の成立条件を満たさない。

Lyhxhjeje
質問者

お礼

具体例を出していただいたり、私の過去の質問にも解説してくれて、ありがとうございます。 紹介していただいたサイト http://www.f.waseda.jp/taniyama/lectures/twcu/pasting-maps.pdf を読んでいるのですが、少しわからないところがあり、質問します。 fの制限写像f|Aによる閉集合Fの逆像(f|A)^−1(F)がAの閉集合になる事はわかるのですがXの閉集合になる事がわからないので、教えていただきたいです。 一応自分なりに考えたのは、 (f|A)^−1(F)がAの閉集合よりこの補集合はAの開集合だから、Xのある開集合Oで、 ((f|A)^−1(F))^c=A∩O となると思います。 ですがAの開集合A∩Oは、Xの開集合とは限らないような気がします。 (例えばAがXの開集合でなくて、O=Xの場合A∩O=Aは、相対位相空間Aでは開集合)

回答No.2

別の例 S, Tを実数体、Aを非負実数の集合、Bを負の実数の集合、f:A→Sをf(x) = 1, g:B→Sをg(x) = 0 とすれば、f, gは共に連続であるが、hはx=0で不連続である。

回答No.1

これは成立しない。 S, Tを実数体、Aを有理数の集合、Bを無理数の集合、 f:A→Sをf(x) = 1, g:B→Sを g(x) = 0 と定めれば、f, gともに連続であるが、h はどの点でも不連続である。

関連するQ&A

  • 位相空間についての質問です。

    位相空間(T,Ot)(Tは集合でOtは位相)として、a,b,cはTの元とします。 連続写像φ:[0,1]→T、φ(0)=a、φ(1)=bが存在して、 連続写像ψ:[0,1]→T、ψ(0)=b、ψ(1)=cが存在するとします。 このとき、連続写像g:[0,1]→T、g(0)=a、g(1)=cは存在するのでしょうか? もし存在するなら証明してほしいです。 自分の持ってる教科書の連続写像の定義は、 f:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔f(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、f(V)Uとなる。 と定めています。 一応、自分で考えたのは、 g:[0,1]→T、g(x)=φ(2x)(0≦x≦1/2)、g(x)=ψ(2x−1)(1/2≦x≦1)なのですが、x=1/2で連続なのかわかりません。g:[0,1/2]→T, g:[1/2,1]→Tは連続だと思います。 g(1/2)∈Uとなる開集合U⊂Tを任意に取ります。 g:[0,1/2]→Tの連続性から1/2∈V1、V1⊂[0,1/2] となる開集合が存在してg(V1)⊂Uで、 g:[1/2,1]→Tの連続性から1/2∈V2、V2⊂[1/2,1] となる開集合が存在してg(V2)⊂Uとなる事はわかります。 V1もV2も[0,1]の相対位相の元なので、V1UV2は、[0,1]の開集合となるのかわからないです。 (V1もV2も[0,1]の位相の元([0,1]の開集合)ならば、V1UV2は、[0,1]の開集合となる事はわかります。)

  • 位相空間における連続写像の条件について

    (X,T),(Y,U)を位相空間とし、fをXからYへの写像とする。 このとき、Xの部分集合Aに対し、f(cl(A))⊂cl(f(A))ならば、 fが(X,T)から(Y,U)への連続写像であるといえますか? ※cl(A)はAの閉包を示す。

  • 連続関数の定義に関して(位相空間)

    「定義 (X、O_X)、(Y、O_Y)を位相空間とする。写像f:X→Yが連続であるとは、U \in O_Y→f~(-1)(U)\in X を満たすことである。(ただし、A\in Bは、AがBに含まれているという意味とする)」 と”連続”の定義が位相空間論の本には載っていて、この定義がε-δ論法での連続の定義と同じであることが一般に言われていますが、どうして位相空間論における連続の定義では、f^(-1)の存在を特に何の指定もなく認めてしまっていいのか、その辺りがよくわかりません。もしもわかっている方がいらっしゃれば、お教えいただけないでしょうか?

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相による写像が連続かどうかの問題です。

    位相による写像が連続かどうかの問題です。 (X,Qx),(Y,Qy):位相空間 写像f:X→Yが連続 ⇔任意のU∈Qyに対して,f^-1(U)∈Qx―(1) R^m:m次元数空間 Q^(m):R^mの開集合全体のなす集合族 X=(R^m,Q^(m)) Y=(R^n,Q^(n)) とすると f:R^m→R^nが(1)の意味で連続 ⇔任意のx∈R^m,任意のε>0,δ(存在する)>0,s,t f(N(x,δ))⊂N(f(x),ε) を証明せよ。 わかる方いましたらどうかよろしくお願いいたします<(_ _)>

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 位相と連続の証明問題で質問です。

    識者の皆様よろしくお願い致します。下記の問題について質問です。 Let A be a set;let {X_α}_α∈J be an indexed family of spaces;and let {f_α}_α∈J be an indexed family of functions f_α:A→X_α. (1) Show there is a unique coarsest topology T on A relative to which each of the fuctions f_α is continuous. (2) Let S_β:={f_β^-1(U_β); U_β is open in X_β},and let S=∪S_β. Show that S is a subbasis for T. (3) Show that a map g:Y→A is continuous relative to T if and only if each composite map f_α。g is continuous. (4) Let f:A→ΠX_α be defined by the equation f(a)=(f_α(a))_α∈J ;let Z denote the subapace f(A) of the product space ΠX_α.Show that the image under f of each element of T is an open set of Z. 「Aを集合とし,{X_α}_α∈Jを添数付けられた(位相?)空間の族とし,{f_α}_α∈Jを添数付けられた写像f_α:A→X_αの族とせよ。 (1) 各f_αが連続となる事に関連したA上の最強位相Tが一意的に存在する事を示せ。 (2) S_β:={f_β^-1(U_β);U_βはXでの開集合},そしてS=∪S_β…(*)とする時,SはTの準開基となる事を示せ。 (3) 写像g:Y→AがTに関して連続⇔各合成写像f_α。gは連続。 (4) f:A→ΠX_αをf(a)=(f_α(a))_α∈J; Zは直積空間ΠX_αのf(A)の部分空間を表す。Tの各元のfの像はZの開集合になる事を示せ。」 (1)については各f_αが連続だというのだから∀t_α∈T_α(但しT_αはX_αの位相),f_α^-1(t_α)はAの開集合(…という事はAは何らかの位相を持っている?その位相をTとしておく)。f_α^-1(T_α)⊂Tになっていなければならない(∵連続の定義)。 よってT=∪[α∈J]{f_α^-1(t_α)∈2^A;t_α∈T_α}…(ア)と書け、TはAの最強の位相だというのだからAの任意の位相は全てTより弱い。 よってTは離散位相にならねばならない? それでT=2^Aを示せばいいのかと思いました。T⊂2^Aは明らかなのでT⊃2^Aを示します。 ∀G∈2^Aを採ると、、、ここからどのように書けますでしょうか? (2)については今,S=∪[β∈J]S_β={s∈2^A;∃β∈J such that s∈S_β}…(**)となっていて, ∪[s∈S]s=Tとなる事を示せばよい(∵準開基の定義)。 ∪[s∈S]s⊂Tを示す。 ∀s∈Sを採ると(*)より,∃β∈J;s=f_β^-1(U_β).よってこれは(1)でのTの元になっているのでs∈T. ∪[s∈S]s⊃Tを示す。 ∀t∈Tを採ると∃β∈J;t=f_β^-1(t_β) (但し,t_β∈T_β)(∵(ア)) よってS_βの定義(S_β:={f_β^-1(U_β);U_βはXでの開集合})からf_β^-1(t_β)∈S_β. よって(*)よりf_β^-1(t_β)∈∪[s∈S]s(∵(**)). 以上より T=∪[s∈S]s. で大丈夫でしょうか? (3)については "⇒"は連続写像同士の合成はまた連続なので明らか。 よって逆を示す。 まずf_α。g:Y→X_αは連続だと言うのだから∀t_α∈T_α,(f_α。g)^-1(t_α)∈T_y (但し,T_yはYの位相)…(***)と書ける。 そしてこれは(f_α。g)^-1(t_α)=g^-1(f_α^-1(t_α)) (∵逆写像の定義)と変形でき, f_α^-1(t_α)∈T_α⊂Tだったので纏めると,,(***)から ∀f_α^-1(t_α)∈T,g^-1(f_α^-1(t_α))∈T_yと書け、gは連続。 (4)についてはf(a)=(f_1(a),f_2(a),…)となっていて Z(⊂f(A))の位相はT_z:={f(A)∩t_p∈2^ΠX_α;t_p∈T_p} (但しT_p:={U[u∈U];U⊂ΠT_α}) と書ける(∵相対位相の定義)。 それで示す事は∀t∈T,t∈T_zである。 ∀t∈Tを採ると∃α∈J;t∈T_αそして,f(t)=(f_1(t),f_2(t),…)となり,今f(t)∈f(A)なので f(t)∈T_zである事を示すにはf(t)∈t_pである事を示せばよい。 でこれらも大丈夫でしょうか?

  • 連続写像について

    Xを位相空間とし、Rを1次元ユークリッド空間とする。写像f:X→Rが連続であることと、任意の開区間G=(a,b)(a<b)に対しf^(-1) (G)がXの開区間になることが同値であることを示してください。 よろしくお願いします。

  • 位相と連続

    何度か、このサイトで位相に関して質問をしている初学者です。 おかげさまをもちまして、理解が進んだと感じています。 さて位相の言葉を使うと、 「位相空間Yの開集合Vのfによる逆写像 f^{-1}(V)=UがXの開集合である場合、f : X→Y は連続」 などというと思いますが、この表現と通常のイメージでいうところの関数の連続/不連続とを対応させて理解を進めたいと思っています。 以下、1次元Euclid空間 X から 1次元Euclid空間 Y への写像 f : X→Yを考えます。 1)x=0でジャンプする関数(x=0で定義されている) : f(x)=x (x <= 0), f(x)=x+1 (x>0) この場合、たとえば (1/2, 3/2) のf による逆写像は f^{-1}((1/2, 3/2)) = [0, 1/2) となります。これは X の開集合ではないので、f(x)は不連続。 2)x=0でジャンプする関数(x=0で未定義): f(x)=x (x < 0), f(x)=x+1 (x>0) 【質問】 ●(1)の考え方、論証はこれで正しいでしょうか。 ●(2)を(1)のと同様の論理で考える場合、 「Yの下位集合 *** の f による逆写像 f^{-1}(***) が Xにおける開集合でないので、f は不連続」 となると思いますが、この場合 *** はどういった集合になり、どういう理屈で逆写像はXの開集合ではない、と結論付けられるのでしょうか。 (x=0で定義されていないので、Xの位相がいわゆる1次元Euclid位相ではない?) 以上、ご教示よろしくお願いします。

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。