• ベストアンサー
  • 困ってます

集合と位相

(問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数114
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

「全射なので」と3箇所に書いてあるけど、本当に全射性が関係してる?全射の意味が分かってますか。 そもそも、問題の条件に全射性がいらないかも。 >任意のV 言いたいことは分かるけど、普通もっと明確に書きます。 (2)は、連続の定義は分かってますか。それが分かればほぼ一発で終わるんだが。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご回答ありがとうございます。 本当に初心者なのでもっと分かりやすく書いてくださるとありがたいです。 全射の定義 Yの任意の元yに対してf(x)=yのx(Xの元)が存在する 任意のV→Uの任意の部分集合V >連続の定義 今調べました。 任意のεにたいし、適当なδをとれば d(x,a)<δ→d(f(x),f(a))<ε になる。

関連するQ&A

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 Yの任意の部分集合Bに対して、全射より f^(-1)(i(B))⊂i(f^(-1)(B)) になるので、fは連続写像である(手持ちのテキストにより)。よって題意がなりたつ。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 位相の定義ついて

    位相の定義ついて 質問させていただきます。 定義の仕方は参考書等で異なるということは理解していますが、私の持っている参考書には以下のように記載されています。 (定義)-- 集合XとXの部分集合族Oについて、Oが次の条件を満たしている場合、OをX上の位相と呼ぶ (O1) Xおよび空集合0はOの元である (O2) Oの任意の部分集合Т'に対して、Т'の元の和集合がOの元である    すなわち、    ∪{T:T∈Т'}∈O    が成り立つ (O3) Oの任意有限個の元T_1,T_2,・・・,T_nに対してそれらの共通集合がOの元である    すなわち、    ∩{T:i = 1,2,・・・,n}∈O    が成り立つ -- ここで、疑問があります。 (O2)は以下のように言い換えることはできますか? (O2) Oの任意有限個の元T_1,T_2,・・・,T_nに対してそれらの和集合がOの元である    すなわち、    ∪{T:i = 1,2,・・・,n}∈O    が成り立つ (O3)は以下のように言い換えることはできますか? (O3) Oの任意の部分集合Т'に対して、Т'の元の共通集合がOの元である    すなわち、    ∩{T:T∈Т'}∈O    が成り立つ 「Oの任意の部分集合Т'の元」 と 「Oの任意有限個の元T_1,T_2,・・・,T_n」 の違いが良く分かっていないのです。。。 どなたか、良い具体例などを交えて、分かりやすく解説していただけませんか? 教科書だけ読んでいるとうまくイメージできません。。。

  • 位相の問題です。

    位相の問題です。 (X,Q)、(X,Q'):位相空間 X×Y={(x,y)|x∈X,y∈Y} Qx×y:=U×V{U∈Q,V∈Q'の形の任意個のX×Yの部分集合の和集合} ここで (X×Y,Qx×y):位相空間になることを示せ。 わかる方いましたらよろしくお願いいたします <(_ _)>

その他の回答 (3)

  • 回答No.4

>距離化定理からかなぁ… んーー・・・第二可算公理を満たす正規空間なら・・・(^^; 本題. まえよりだいぶましになったけど・・・ dなんて言い出すくらいだから。。。ダメですな. 写像の逆像の性質を分かってないのでそれを調べましょう. なんでもかんでも,てきとうに「全射より」ではまったくだめです. (2)については 「最小の位相」とはなにかを調べましょう

共感・感謝の気持ちを伝えよう!

質問者からのお礼

一度しめます。

質問者からの補足

>写像の逆像の性質を分かってないのでそれを調べましょう. O2についてはf^(-1)(Q1∪Q2)=f^(-1)(Q1)∪f^(-1)(Q2) O3についてはf^(-1)(Q1∩Q2)=f^(-1)(Q1)∩f^(-1)(Q2) を使うという感じですか? >「最小の位相」とはなにかを調べましょう テキストの位相の箇所を読んでみたのですが、「最小の位相」に関する記述が見つかりません。 もうどうしたらいいのかわからなくなってきました。

  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

> そもそも d は何処からきたのですか? 距離化定理からかなぁ…

共感・感謝の気持ちを伝えよう!

  • 回答No.2

> >連続の定義 > 今調べました。 > 任意のεにたいし、適当なδをとれば > d(x,a)<δ→d(f(x),f(a))<ε > になる。 少なくとも自分が間違えていることには気付いてほしい。 問題の文脈でその連続の定義はどう考えてもおかしいです。そもそも d は何処からきたのですか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 位相

    数学科2年のものです。 位相空間についての授業が始まったのですが、演習問題で、わからない問題があります。 初歩的な問題かもしれませんが、どなたか解答お願いします。 集合S={1,2,3,4}に部分集合族Lを L={Φ、{1}、{1,2}{1,3}{1,2,3}、S} により与える。Sの部分集合{1,2,4}をTとおく。 (1)(S,L)は位相空間であることを示せ。 (2)位相空間(S、L)においてTの内部を求めよ。 (3)位相空間(S、L)においてTの閉包、境界を求めよ。 特に(1)の位相空間の定義の、「Lに属する任意個の和集合がLに属すること」の確認の仕方に自信がないので、お願いします。

  • 集合と位相

    位相空間X、Yの間の2個の連続写像が稠密な部分集合の上で一致すれば2個の写像は等しい。という命題なのですがYがハウスドルフ空間という条件がないので正しくないということまではわかりました。あと反例も探しているのですがイメージがよくわかなくて反例がわかりません。X、Yと二個の連続写像それぞれに具体的なものを当てはめるのですか?助けてください

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 集合と位相の問題です。

    X の開集合系O1, O2 がO1  O2(つまりO1 はO2 より弱い位相) を満 たすとする。このとき恒等写像id : X ! X; id(x) = x, は(X;O2) から (X;O1) への連続写像であることを示せ。O1 がO2 より真に弱い位相のと き、id は(X;O1) から(X;O2) への連続写像ではないことを示せ。 どうかお願いします。

  • 位相空間の定義に関する疑問

    位相空間の定義: 集合Sが次の条件を充たす集合族をもつとき「位相空間」とよぶ 1. 空集合と、S自体がその集合族に属する 2. 集合族に属する集合の交わりが集合族に属する 3. 集合族に属する無限個の集合の和集合が集合族に属する というのがありますが、1番目の条件は当然として、2番目と3番目の条件で、どうして2は有限個の集合の交わりで定義され、3だけが無限個の集合の和集合で定義されているのかわかりません。例えば、2の条件を「集合族に属する無限個の集合の交わりが集合族に属する」と書き換えるのはどうしてだめなんでしょうか?(具体的に、ちょうど良い例などが浮かばずに困っています。)

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 位相についてのご質問です。

    位相について質問です。 「集合Sの部分集合族Kが (1)O(空集合)、SがKに含まれる (2)集合A,BがKに含まれるならAとBの共通集合もKに含まれる。 (3)任意のKの元Fmに対してFmの全和集合もKに含まれる。 以上を満たす時,KはSに位相を与えるといい(S,K)を位相空間という。 そして、Kの元を開集合といいKを開集合系という。」 このKの元を開集合といいという所からさっぱり分かりません。 どこがどう開集合なんですか? 例えばS={1,2,3}とすればK={O,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} となってこれは(1)から(3)を満たすので(S,K)は位相空間でKの元は開集合にもなってないと思うのですが。

  • 位相空間への全射について

    位相空間への全射について 位相空間と写像について学習している者です。 質問させていただきます。 -- 集合Xから位相空間(Y,μ)への全射fがあるとき、 Т = {(1/f)(U)|U∈μ}とおくとき、ТがX上の位相であることを証明せよ。 ※(1/f)はfの逆関数を示します。 -- これを証明したいのですが、道筋が見えません。。。 ご教授よろしくお願いいたします。