• 締切済み
  • 困ってます

集合・位相

集合・位相初心者です。 授業で開集合と閉集合、近傍の定義を教えてもらったのですが、理解できず、困っています。 以下は、授業で使っているプリントに載っている定義です。 X:集合 T:Xの部分集合からなる集合族 (X,T):位相空間 とする。 Xの部分集合UがTの元であるとき、Uを開集合という。 また、Xの部分集合Fの補集合がTの元であるとき、Fの閉集合という。 点x∈Xに対して x∈U゜ を満たすXの部分集合Uを近傍という。また、このような近傍全体のなす集合族をxの近傍系といい、U(x)で表す。 具体的な例で教えて頂けると助かります。 例えば、集合X={1,2,3,4,5}、位相T={φ,{3},{4},{3,4},{1,3},{1,3,4},X}として、位相空間(X,T)をつくると、この(X,T)の開集合、閉集合、点3の近傍(点は適当に選びました)はどうなるのか。 集合・集合は初心者なので、詳しく教えて頂けると嬉しいです。 ご教授、よろしくお願い致します。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数410
  • ありがとう数6

みんなの回答

  • 回答No.2

(X,T) が位相空間になるためには、 T がいくつかの条件(公理)を満たすことが必要です。 X の部分集合の族なら何でも T に成れる訳ではありません。 プリントに戻って、「開集合族」の定義を確認のこと。 実際、質問文中の例は、位相空間になっていません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

もう少し、自分で考えて、また質問させて頂きます。 アドバイスありがとうございました。

質問者からの補足

質問中の例は、プリントに載っていた問題で、近傍を自分で足しただけなのですが、位相空間になっていないということは、ミスということですね。すみません。 このようなX,Tで教えて頂けると、助かります。 ご教授よろしくお願い致します。

関連するQ&A

  • 正則かつ非正規である位相空間

    正則空間であり正規空間でないような位相空間の例を教えてください。 (証明は書かなくても構わないです。ただできれば、位相を開集合系、閉集合系、 近傍系、基本近傍系、開集合系の基底のどれか一つのみで定めてください)

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 位相空間の問題についてです。以下の問題がわかる方い

    位相空間の問題についてです。以下の問題がわかる方いましたら、一問でもいいので、教えてくださると助かります…! 次の各集合が開集合あるいは閉集合いずれであるか判定せよ。 (1) (1,4)U{5}(Rの部分集合として) (2) {( x , y )∈R^2 ; 3 < x + y , x^2 > y}(R^2の部分集合として) (3) {( x , y , z )∈R^3 ; x^2 + y^2 + z^2≦ 1}(R^3の部分集合として)

  • 回答No.1

まずは、あなたが挙げた例が位相空間を成していることの証明を補足にどうぞ。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

もう少し自分で考えてみようと思います。 そして、また質問させて頂きたいと思います。 ご意見ありがとうございました。

質問者からの補足

(1)φ∈T,X∈Tは明らか。 (2)∀U,V∈T⇒U∩V∈Tを示す。 U∩Vの表を作る。(見にくくてすみません) U \ V | φ {3} {4} {3,4} {1,3} {1,3,4} X φ| φ φ φ φ φ φ φ {3}|φ {3} φ {3} {3} {3} {3} {4}|φ φ {4} {4} φ {4} {4} {3,4}|φ {3} {4} {3,4} {3} {3,4} {3,4} {1,3}|φ {3} φ {3} {1,3} {1,3} {1,3} {1,3,4}|φ {3} {4} {3,4} {1,3} {1,3,4} {1,3,4} X|φ {3} {4} {3,4} {1,3} {1,3,4} X よって、U∩V∈T (3)∀e⊂T⇒∪_(U∈e) U ∈Tを示す。 (2)と同じようにU∪Vの表を作る。 U \ V | φ {3} {4} {3,4} {1,3} {1,3,4} X φ|φ {3} {4} {3,4} {1,3} {1,3,4} X {3}|{3} {3} {3,4} {3,4} {1,3} {1,3,4} X {4}|{4} {3,4} {4} {3,4} {1,3,4} {1,3,4} X {3,4}|{3,4} {3,4} {3,4} {3,4} {1,3,4} {1,3,4} X {1,3,4}|{1,3,4} {1,3,4} {1,3,4} {1,3,4} {1,3,4} {1,3,4} X X|X X X X X X X よって、U∪V∈T したがって、(X,T)は位相空間。 どうでしょうか? プリントに載っていた解き方を使いました。ある位相の基を使ってもできるみたいですが、そちらの方もまだ理解できておらず…すみません。 ご教授よろしくお願い致します。

関連するQ&A

  • 位相

    数学科2年のものです。 位相空間についての授業が始まったのですが、演習問題で、わからない問題があります。 初歩的な問題かもしれませんが、どなたか解答お願いします。 集合S={1,2,3,4}に部分集合族Lを L={Φ、{1}、{1,2}{1,3}{1,2,3}、S} により与える。Sの部分集合{1,2,4}をTとおく。 (1)(S,L)は位相空間であることを示せ。 (2)位相空間(S、L)においてTの内部を求めよ。 (3)位相空間(S、L)においてTの閉包、境界を求めよ。 特に(1)の位相空間の定義の、「Lに属する任意個の和集合がLに属すること」の確認の仕方に自信がないので、お願いします。

  • 位相についてのご質問です。

    位相について質問です。 「集合Sの部分集合族Kが (1)O(空集合)、SがKに含まれる (2)集合A,BがKに含まれるならAとBの共通集合もKに含まれる。 (3)任意のKの元Fmに対してFmの全和集合もKに含まれる。 以上を満たす時,KはSに位相を与えるといい(S,K)を位相空間という。 そして、Kの元を開集合といいKを開集合系という。」 このKの元を開集合といいという所からさっぱり分かりません。 どこがどう開集合なんですか? 例えばS={1,2,3}とすればK={O,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} となってこれは(1)から(3)を満たすので(S,K)は位相空間でKの元は開集合にもなってないと思うのですが。

  • 位相空間の質問です

    テストにむけてどうしてもわからないところがあります (X,O)を位相空間とする 点a∈Xの近傍全体の集合族をaの近傍系といいN(a)で表す また点aの開近傍全体の集合族をaの開近傍系といい、No(a)で表す (1)a∈X ⇒ X∈No(a)⊂N(a) (2)N∈No(a) ⇒ a∈N N∈N(a) ⇒ a∈N (3)N∈N(a)、N⊂M⊂X ⇒ M∈N(a) この1,2,3を示したいです 教えてください

  • 位相空間

    位相空間(X,T)の2つの部分集合A,Bについて (1) (A∩B)_ ⊂ A_∩B_    ※『_』は閉集合 この証明の方法を詳しく教えて下さい! 両辺は=(イコール)にはならないのでしょうか?? (2) Aが開集合のとき A∩B_ ⊂(A∩B)_ この証明方法も詳しく教えて下さい。お願いします。  

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 位相空間

    位相初心者です。次の問題がよく分かりません。 問.実数直線R1の位相をTとする。   BをTに各無理数についてそれだけを元とするRの部分集合を   すべてつけ加えたRの部分集合族     B=T ∪ {{x}:x∈P}   とする。このBにおいて生成されたR上の位相T_Mに対して、   位相空間(R,T_M)をMで表す。     このMについて、次を求めよ。(証明付きで。)  (1) i(Q)、i(P) (iは内部を表す。)  (2) Qの閉包、Pの閉包 (1)は、Qは有理数全体の集合だから、Qに含まれるMの開集合全体の 和集合は、Φ となる。 (2)も同様に、Qを含むMの閉集合全体の共通集合はQである。 こんな感じでいいのでしょうか。もっと適当な証明があれば、 教えてください。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相

    X を位相空間,Y をコンパクト位相空間とする.このとき, (1) U を直積位相空間X × Y の開集合としたとき, A = { x | {x} ×Y ⊂ U } はX の開集合であることを示せ. これを解くためのヒントをください。 Aに含まれる任意の点 x1のある近傍がAに含まれることをしめすんですね。そのような近傍をどうとればいいんでしょうか。

  • 直積位相

    X、Yを位相空間とする。 『W⊂X×YがX×Yの開集合⇔任意の(x,y)∈Wに対して、x∈XのXにおける開近傍U⊂X、y∈YのYにおける開近傍V⊂YでU×V⊂Wとなるものが取れる』 と定義することにより、X×Yは位相空間になる事を示せ。 という問題です。 X、Yが位相空間なので、それぞれの位相をO(X)、O(Y)としてX×Yの位相をO(X×Y)={Uλ×Vλ;Uλ∈O(X)、Vλ∈O(Y)}とおいて証明しようとしたのですが、これでは上記の定義が満たされていないと注意され詰まってしましました。 どなたかアドバイス(もしくは証明)していただけませんでしょうか?

  • 「位相空間 (X、T)の二つの部分集合A,Bについて、 Aが開集合のと

    「位相空間 (X、T)の二つの部分集合A,Bについて、 Aが開集合のとき、 A ∧ (Bの閉包)が (A ∧ B)の閉包 に含まれることを示せ」 という問題がわかりません。 証明の仕方を教えて下さい。 教科書はちゃんと読んだのですが、挫折しました。 よろしくお願いします。