- ベストアンサー
位相空間・直積空間
はじめまして。 数学科の学生です。 位相空間のテストを間近に控え勉強しています。 「集合と位相」 鎌田正良著 P107[3-4] A1を位相空間X1の部分空間とし、A2を位相空間X2の部分空間とすると、直積空間A1×A2は直積空間X1×X2の部分空間を示せ。 この問題が分かりません。 相対位相と直積空間を使うというのは分かるのですが、 直積空間の定義自体がしっくりきません。 どなたかお力をお貸しください。
- みんなの回答 (5)
- 専門家の回答
関連するQ&A
- 直積位相定義が2個の直積の場合に合致してるか?
直積位相の定義についての質問です。 [定義ア]位相空間(X_λ,T_λ) (λ∈Λ(Λは任意の添数集合))と射影fが与えられていて,直積集合P:=ΠX_λとおく。 この時,X_λ⊃{f_λ^-1(t_λ)∈2^P;t_λ∈T_λ}=:S_λをf_λによって誘導される(X_λ,T_λ)の位相と呼ぶ。 次に和集合B:=∪S_λと置き, この時,このBから生成される位相{U∈2^P;∀x∈U,∃b∈B such that x∈b⊂U} を直積集合Pの直積位相と呼ぶ。 が直積位相の定義だと思います。 [定義イ]2個の直積(X_1,T_1)×(X_2,T_2)の場合の直積位相は{∪[g∈G]g ;G⊂T_1×T_2}と載ってました。 [定義ウ]集合Xの部分集合族Bが以下の条件を満たすときBをXの開基という (1)BはXを被覆する (2)任意のb1,b2∈Bおよび任意のx∈b1∩b2に対して、あるb∈Bが存在して、x∈b⊂b1∩b2となる。 [定義エ] Bを集合Xの開基とする時,{U∈2^X;∀x∈U,∃b∈B such that x∈b⊂U}をBによって生成される位相という。 そこで定義アの直積位相定義が2個の直積の場合に定義イと合致してるか調べています。 まずS_1={f_1^-1(t_1);t_1∈T_1},S_2={f_2^-1(t_2);t_2∈T_2}でB:=S_1∪S_2と置く。 そしてこのBによって生成される位相は{U∈2^(X_1×X_2);∀x∈U,∃b∈B such that x∈b⊂U}:=L これが{∪[g∈G]g;G⊂T_1×T_2}:=Mに一致してるか吟味してみます。 (i) L⊂Mを示す。 ∀U∈Lを採ると,∀x∈Uに対してx∈b⊂Uなるb∈Bが存在する。 Bの定義よりb={f_1^-1(t_1),f_2^-1(t_2)}という集合になっています。 そこで結局の所,Uは常にbを含んでいなければならない訳ですからU=∪[b∈B']b (但しB'⊂B)…(1)となっていますよね。 所でBの元達はというとB:=S_1∪S_2な訳ですから(1)は U={(t_1×x_2)∪(x_1×t_2);x_1⊂X_1,x_2⊂X_2}という形になってますよね。 ここでx_1やx_2は必ずしもT_1やT_2の元とは限らないわけですよね。 なのでこのUは∪[g∈G]g;G⊂T_1×T_2には含まれませんよね。 どうすればLとMが合致しますでしょうか? それとも直積位相は2個の直積集合の場合と3個以上の直積集合の場合とでのそれぞれ直積位相の概念は異なるのでしょうか?
- 締切済み
- 数学・算数
- 直積位相空間について
以下の命題の証明の仕方が分かりません。 「(A_1, O_1), (A_2, O_2): 二つの位相空間, (A_1×A_2, O): (A_1, O_1) と (A_2, O_2) の直積位相空間, X_1⊆A_1, X_2⊆A_2, X_1 と X_2 は共にコンパクト, W∈O s.t. (X_1×X_2)⊆W であるとき、 ある U_1∈O_1, U_2∈O_2 で、 X_1⊆U_1, X_2⊆U_2, (U_1×U_2)⊆W を満たすものが存在する」 証明の方針だけでも教えて頂けないでしょうか。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 位相空間論について質問です。来週、大学で位相空間論のテストがあります。
位相空間論について質問です。来週、大学で位相空間論のテストがあります。一通り学習範囲を終え、ある程度の基本問題も解け、仕上げの段階に近づいてきました。昨年、必修で単位を落としてしまい、今年は猛勉強して間違えてなかったとテスト前の今の段階でさえ思います。(それだけ私にとっては苦手とする難しい分野なのです。)なので、今回は、一度解いた問題を別の切り口から見れないか?(別解はないか?)ということで、質問します。例えば、「コンパクト集合の直積はコンパクトであることを証明せよ」という問いに対し、私は「(X,Ox),(Y,Oy)を位相空間とし、A⊂X,B⊂Y(ともにコンパクト集合)。直積空間(X*Y,Ox*Oy)において、その部分集合A*Bはコンパクトであること」を示し、A=X,B=Yのような流れで行きます。他に証明のアプローチがありましたら、どうか教えて下さい。よろしくお願いいたします。
- ベストアンサー
- 数学・算数
- 集合と位相
(1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。
- ベストアンサー
- 数学・算数
- 直積位相
X、Yを位相空間とする。 『W⊂X×YがX×Yの開集合⇔任意の(x,y)∈Wに対して、x∈XのXにおける開近傍U⊂X、y∈YのYにおける開近傍V⊂YでU×V⊂Wとなるものが取れる』 と定義することにより、X×Yは位相空間になる事を示せ。 という問題です。 X、Yが位相空間なので、それぞれの位相をO(X)、O(Y)としてX×Yの位相をO(X×Y)={Uλ×Vλ;Uλ∈O(X)、Vλ∈O(Y)}とおいて証明しようとしたのですが、これでは上記の定義が満たされていないと注意され詰まってしましました。 どなたかアドバイス(もしくは証明)していただけませんでしょうか?
- ベストアンサー
- 数学・算数
- 相対位相について教えて下さい!!!!!!!!!
(X,O)を位相空間、A⊂X、O|AをAの相対位相、X=R,Oを1次元ユークリッド位相、A=[0,1]とする。 部分位相空間(A,O|A)で、Aの部分集合B=(1/2,1]の内部と閉包を求めよ。 という問題なのですが・・・。相対位相がイマイチ分かりません(。。;) BもAの相対位相になるんじゃないんですか・・・? 分かる方お願いしますm(__)m
- 締切済み
- 数学・算数
- 位相数学について再び質問です
http://oshiete1.goo.ne.jp/qa2686308.htmlで質問したものです。 また自分なりに考えた解答を添削&教えてください。 問1-1)(X、Ox)(Y,Oy)を位相空間とする X × Yの直積位相とは何か? これがさっぱりわかりません。 問1-2)XとYがハウスドルフ空間ならば、X × Yもハウスドルフ空間であることを示せ。 これもさっぱりです。たぶん問1-1を使うと思います。 問2)(X、d)を距離空間とする 距離dの定めるXの位相Odの定義とはなにか? これもわかりません、どういう意味でしょうか?位相Odが距離空間の定義を満たすということでしょうか? 問3)Xがコンパクトで、A⊂Xが閉集合ならAもコンパクトであることをしめせ。 Xがコンパクトだから、Xの任意の開被覆が必ずXの有限被覆を部分集合として含んでいる。ここまではいいと思います。たぶんAがコンパクトでないと仮定して矛盾を示すと思います。これ以上がどうしてもわからないです。
- 締切済み
- 数学・算数
- 直積集合の作り方について
こんにちは。 物理学を学んでいる学生ですが数学を独学で勉強中で直積集合の構成について質問があります。 目的は直積集合で座標軸xを構成することとします。 このとき、 ある添数集合N(自然数)を定義し、その元をλとします。(λ=1,2,3,・・・) この時、Nによって添数づけられた集合族 (A)λ∈N を定義しておいて、 この集合族Aを(-λ, λ)としておく。 全ての添数λ(∈N)についての集合族Aの和集合で直積集合を構成することにする。 このとき、Aの和集合で構成される直積集合は(-∞,∞)の集合となりますか? この考え方で座標軸x軸を構成できると思いました。 この考え方は正しいですか? また、間違っているならどこが間違っているか教えてください。 お願いします
- ベストアンサー
- 数学・算数
- Wi-Fiルータを新しいものに買い替え、ブリッジモードで使用しています。プリンタ本体、PC、スマホそれぞれの無線LAN接続は完了しているのですが、PCのBrother iPrint&Scan上ではプリンタがオフライン、スマホアプリのMobile Connectでは製品の登録ができません。何に問題があるのでしょうか?何度接続し直しても上手くいかないので、今はプリンタ有線LANで接続し、使用できています。
- PCとスマホの無線LAN接続は完了しているが、PCのBrother iPrint&Scanではプリンタがオフライン状態、スマホアプリのMobile Connectでは製品の登録ができない問題が発生している。何度接続し直しても解決しないため、現在はプリンタを有線LANで接続して使用している。
- 新しいWi-Fiルータを導入し、ブリッジモードで使用しているが、プリンタがオフラインであるとPCのBrother iPrint&Scan上で表示され、スマホのMobile Connectでは製品の登録ができない問題が発生している。何度も接続し直しても改善されず、現在は有線LAN接続でプリンタを使用している。
補足
回答ありがとうございます。 テストに出たら絶対満点を取りたい問題なのでもう一度示します。 ご意見をお願いいたします。 A1=A、A2=B、X1=X、X2=Yとする。 [a] まず直積の定義より O(A×B) ={(V×U)|V∈O(A)、U∈O(B)} ・・・(★) O(X×Y) ={(W×Z)|W∈O(X)、Z∈O(Y)} ・・・(☆) [b] また A⊂Xより相対位相を考えると V∈O(A) ⇔ ∃W∈O(X) s.t. V=A∩W B⊂Yより同様に U∈O(B) ⇔ ∃Z∈O(Y) s.t. U=B∩Z ここでV=A∩W、U=B∩Z より(★)に代入すると O(A×B) ={((A∩W)×(B∩Z))|(A∩W)∈O(A)、(B∩Z)∈O(B)} となり、 ={(A×B)∩(W×Z)} と変形される。 (☆)より(W×Z)はO(X×Y)の元である。 よって(A×B)は(X×Y)に対する相対位相をもつ。 題意は示された。 koko_uさんのご意見をふまえるとこのような感じでしょうか? また直積の定義ですが、λ=2 つまり2つの位相空間での直積空間は上記のようでいいのでしょうか? 教科書を見てみるとこのようにはなっているのですが・・・