• ベストアンサー
  • 困ってます

位相空間の問題なんですが…

(X,d)距離空間とし、X=A∪Bにおいて 連続写像 f:(A,d)→(Y,ρ)      g:(B,d)→(Y,ρ)であり 写像 h:(X,d)→(Y,ρ)       f(x) if x∈A h(x)={             と定義する。       g(x) if x∈B       このときA、B共に(X,d)の開集合(閉集合)ならば、hは連続であることを証明せよ。 という問題です。わかる方、証明のアイデアだけでも結構です。宜しくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数77
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • nubou
  • ベストアンサー率22% (116/506)

仮定から aがAに含まれれば任意の正数εにたいして適当な正数δが存在し d(x,a)<δならばρ(f(a),f(x))<εであり aがBに含まれれば任意の正数εにたいして適当な正数δが存在し d(x,a)<δならばρ(g(a),g(x))<εである 従ってh(x)の定義から aがAに含まれれば任意の正数εにたいして適当な正数δが存在し d(x,a)<δならばρ(h(a),h(x))<εであり aがBに含まれれば任意の正数εにたいして適当な正数δが存在し d(x,a)<δならばρ(h(a),h(x))<εである よくみるとコピーに注意がいっていてむちゃくちゃなことを書いていました

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 なるほど~、と思いました。 自分でも解いてみようと思います。

関連するQ&A

  • 位相空間の収束の問題

    fを位相空間Xから実数Rへの連続写像、A⊂Xとする。任意のx∈Aに対して、f(x)=0のとき、任意のx∈A'(A':Aの閉包)に対して、f(x)=0であることを示したいのですが…よくわかりません。 A'がAの閉包ということは、A'はAを含む最小のXの閉集合なので、今の条件のとき、A'についてもf(x)=0が言えるのかな…ということはわかるのですが、きちんと文章にして示すことができません。 回答よろしくお願いします。。。

  • 位相空間のコンパクト化の問題で困っています。

    最初に問題と回答を写します (X,〇)、(X',〇')、(X'',〇'') をそれぞれ 〇, 〇', 〇''を開集合系とする位相空間 f:X→X' g:X'→X'' を連続写像とする 問:Y⊂X がコンパクトであるとき f(Y) がコンパクトになることを証明せよ 答:ц={U(λ)|λ∈Λ} を f(Y) の開被覆とすると f が連続写像であることより ц'={f^(-1)・(U(λ)) |λ∈Λ} は Y の開被覆となる Y はコンパクトであるから,ある ц' の部分被覆 {f^(-1)・(U(λ1))、f^(-1)・(U(λ2))、…、f^(-1)・(U(λn))} が存在する。このとき {U(λ1)、U(λ2)、…、U(λn)} が ц の部分被覆になるのは容易に分かるので f(Y) はコンパクト ■ この最後のところで、どうして {U(λ1)、U(λ2)、…、U(λn)} が цの部分被覆になるのかが分からないので教えて欲しいです。 よろしくお願いします。別解などありましたら歓迎です。

  • 位相空間についての質問

    次の集合論・位相空間論の問題が分かりません。教えていただけると嬉しいです。 (X,d)を距離空間f:X→Xを連続写像とする。 {K_n}(n≧1)を空でないコンパクト集合の列で f(K_n)⊃K_(n+1)が全てのn∈Nについて成立するとする。 このとき空でないコンパクト集合Kでf(K)=Kとなるものが存在することを示せ。

その他の回答 (2)

  • 回答No.2
  • nubou
  • ベストアンサー率22% (116/506)

d(*(x,d))<ε→ρ(*(x,d))<ε ただし*=fまたはgまたはh

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • nubou
  • ベストアンサー率22% (116/506)

(Y,ρ)も距離空間だとほとんど自明ですね 仮定から xがAに含まれれば任意の正数のεにたいして適当な整数δが存在し d(x,d)<δならばd(f(x,d))<εであり xがBに含まれれば任意の正数のεにたいして適当な整数δが存在し d(x,d)<δならばd(g(x,d))<εである 従ってh(x)の定義から xがAに含まれれば任意の正数のεにたいして適当な整数δが存在し d(x,d)<δならばd(h(x,d))<εであり xがBに含まれれば任意の正数のεにたいして適当な整数δが存在し d(x,d)<δならばd(h(x,d))<εである いっぱい書いているようだけどコピーだからね

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 位相空間

    位相空間(X,T)の2つの部分集合A,Bについて (1) (A∩B)_ ⊂ A_∩B_    ※『_』は閉集合 この証明の方法を詳しく教えて下さい! 両辺は=(イコール)にはならないのでしょうか?? (2) Aが開集合のとき A∩B_ ⊂(A∩B)_ この証明方法も詳しく教えて下さい。お願いします。  

  • 位相空間について

    次の問題がわかりません。。 実数の集合Rにおいて、次の部分集合族Oを考える。 まずR,φ∈Oである。 U≠R,φのとき、U∈O⇔U=R-A(A:有限集合)と定義する。 (1)Oが開集合系であることを示せ (2)写像f:(R,O)→(R,O) f(x)=x^2は連続であることを示せ。 (3)写像g:(R,O)→(R,O) g(x)=sin x は連続ではないことを示せ。 (1)については ()R、φ∈Oは定義よりOK ()U1、U2∈O⇒U1∩U2∈Oは無限集合の積集合は無限集合 ()Wλ∈O⇒∪Wλ∈Oは無限集合の和集合は無限集合 な感じでよろしいでしょうか? (2)はf(x)に値域が0≦f(x)≦∞であるから任意のU∈Oに対してf‐1(U)は無限集合 (3)はg(x)の値域が-1≦g(x)≦1であるから任意のW∈Oに対してg‐1(W)は有限集合 みたいな感じでよろしいのでしょうか? 解答や書き方がわからなくて困ってます・・・

  • 部分空間の証明

    Sを距離空間、Yをノルム空間とし、SからYへの連続写像全体の集合をC(S,Y)で表す。また、Cb(S,Y)=Fb(S,Y)∩C(S,Y)と置く。 ただし、F(S,Y)はSからYへの写像全体の集合で、Fb(S,Y)={u∈F(S,Y)| sup(t∈S)||u(t)||_Y<∞}でとします。 この時Cb(S,Y)はFb(S,Y)の閉部分空間であることを示せ。 定義として Xの部分集合YがXの部分空間である ⇔∀u,v∈Y,∀α,β∈Kに対してαx+βy∈Y まず感覚的にですが、Cb(S,Y)⊂Fb(S,Y)なので部分集合であることはOK 後は∀u,v∈Cb(S,Y)、∀α,β∈Kに対してαx+βy∈Cb(S,Y)を示す。 u,v∈Cb(S,Y)よりx,y∈Fb(S,Y) 任意のt∈Sに対して、 ||(αu+βv)(t)||=||αu(t)+βv(t)|| ≦||αu(t)||+||βv(t)||=|α|*||u(t)||+|β|*||v(t)|| ≦|α|sup(t∈S)||u(t)||+|β|sup(t∈S)||v(t)|| となるので有界であることは示せました。 後は連続性と閉集合であることを示したいのですが、 これはどのように示せばいいのでしょうか? 連続写像の和、スカラー倍は確かに連続写像となることは、 集合と位相あたりの本に書いてあったような気がしましたが…。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相空間の本で

    読んでいてあまりわからない所が2点ありまして、 1.XにXのすべての部分集合を開集合とする位相を入れると、   Xの部分集合Cがコンパクト ⇔ Cが有限集合 という部分と、 2.Xをコンパクトハウスドルフ空間、Yをハウスドルフ空間とするとき、   写像f:X→Yが全単射連続なら逆像f-1:Y→Xも連続になる という部分に疑問が残りました。 1.については、コンパクト⇒閉集合であることや、Cが有限集合なら有限個の開被覆で覆えるからコンパクトである、ということが使える(?)のではじめの「XにXのすべての部分集合を開集合とする位相を入れる」部分が必要ないのではないかとも思うのですが・・・ 2.については、Xがコンパクトハウスドルフ空間ならその部分集合Cもコンパクトでその写像はやっぱりコンパクトで・・・その逆像もコンパクトで・・・・? どこから連続の議論に持っていけばよいのかが分かりませんでした。 「証明は読者に委ねよう」というお得意の言い回しで飛ばされてしまっていて、なんだか消化不良のままです>< ご返答よろしくお願い致します。

  • 距離空間でどのように開集合族をとれば位相空間になる?

    よろしくお願い致します。 距離空間Xはその距離によって定められる開集合族をGとすればXは位相空間になると本に書いてあったのですが いまいち文意が分かりません。 距離d:X^2→Rに於いて、具体的にどのようにGを定めればいいのでしょうか?

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 位相空間の問題についてです。

    位相空間の問題についてです。 (1)開写像だが閉写像ではなく、連続でもない (2)閉写像だが開写像ではなく、連続でもない (3)開写像でも閉写像でも連続でもない (1)~(3)それぞれの条件を満たす位相の写像の例はそれぞれどんなものがありますか。もし写像が存在しない場合は、その証明を記して頂けると助かります。

  • 位相の問題(距離空間)について

    以下の問題のヒントをくださいm(、、)m 距離空間(X,d)の点aのε近傍U(a;ε), 点bのδ近傍U(b;δ) について. (1) d(a,b)≧ε+δ ⇒ U(a;ε)∩U(b;δ) =φ を示せ. (2) d(a,b)<ε+δ ⇒ U(a;ε)∩U(b;δ) ≠φ であるといえるか? 証明または反例を示せ. (3) U(a;ε)はXの開集合であることを証明せよ. (1) U(a;ε) = {x∈R^n | ||a-x||<ε} U(b;δ) = {y∈R^n | ||b-y||<δ} とかける z∈U(a;ε)∩U(b;δ) をとると ||a-z||<εかつ ||b-z||<δ をみたす このとき d(a,b) = ||a-b|| = ||a-z+z-b|| ≦ ||a-z||+||z-b|| <ε+δ ∴ε+δ>d(a,b) よって,ε+δ≦d(a,b) ⇒ U(a;ε)∩U(b;δ) =φ ■ (2) 成り立つとおもうのですが証明がどうすればいいのか‥‥ (3) 近傍の定義より明らか? よろしくおねがいします。

  • 写像の連続性について

    (Z,d)から任意の距離空間(Y,d_Y)への任意の写像fが連続であることを証明したいです。 ただし、Zは整数全体の集合でd(x,y)=|x-y|です。 任意の写像fの連続性について証明するのでYの任意の開集合Oについてf^(-1)(O)がZの開集合であることを示そうと考えたのですが、fが任意なのでf^(-1)もどのような様子かわからず困っています。 以下、自分の回答を掲載します。間違えている点と、どのように考えるべきかを教えてください。 任意のx,y∈Zに対しf(x),f(y)が存在する。 Oは開集合なのであるε(>0)が存在し、 f(y)∈N(f(x);ε)⊂O ⇔ y∈f^(-1){N(f(x);ε)}⊂f^(-1)(O) ここまでです。よろしくお願いします。