• ベストアンサー

位相空間についての質問

次の集合論・位相空間論の問題が分かりません。教えていただけると嬉しいです。 (X,d)を距離空間f:X→Xを連続写像とする。 {K_n}(n≧1)を空でないコンパクト集合の列で f(K_n)⊃K_(n+1)が全てのn∈Nについて成立するとする。 このとき空でないコンパクト集合Kでf(K)=Kとなるものが存在することを示せ。

質問者が選んだベストアンサー

  • ベストアンサー
  • tmpname
  • ベストアンサー率67% (195/287)
回答No.1

Xを実数直線に、通常の位相を入れたものとする。Xは距離空間である。f: X→Xをf(z) = z+1で定めると、fは連続。 n≧1に対し、K_n = [ n, n+1] = { z∈X | n ≦ z ≦ n+1 } で定めると、K_n はcompact。かつ f(K_n) = [ n+1, n+2] = K_(n+1)だから、f(K_n)⊃K_(n+1)を満たす。 所で、KをX(つまり実数体)の空でないcompact集合とすると、Kには最大値aが存在する。a∈K、かつz∈K⇒z≦a。ところで f(K) ∋ f(a) = a+1 であるが、a+1 > aであるから、¬ ( a+1∈ K)。従って、K≠f(K)である。 従って、題意は成り立たない。

applydisappear
質問者

お礼

問題自体が不成立だったとは。 ありがとうございます!

関連するQ&A

  • 位相空間の本で

    読んでいてあまりわからない所が2点ありまして、 1.XにXのすべての部分集合を開集合とする位相を入れると、   Xの部分集合Cがコンパクト ⇔ Cが有限集合 という部分と、 2.Xをコンパクトハウスドルフ空間、Yをハウスドルフ空間とするとき、   写像f:X→Yが全単射連続なら逆像f-1:Y→Xも連続になる という部分に疑問が残りました。 1.については、コンパクト⇒閉集合であることや、Cが有限集合なら有限個の開被覆で覆えるからコンパクトである、ということが使える(?)のではじめの「XにXのすべての部分集合を開集合とする位相を入れる」部分が必要ないのではないかとも思うのですが・・・ 2.については、Xがコンパクトハウスドルフ空間ならその部分集合Cもコンパクトでその写像はやっぱりコンパクトで・・・その逆像もコンパクトで・・・・? どこから連続の議論に持っていけばよいのかが分かりませんでした。 「証明は読者に委ねよう」というお得意の言い回しで飛ばされてしまっていて、なんだか消化不良のままです>< ご返答よろしくお願い致します。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相空間のコンパクト化の問題で困っています。

    最初に問題と回答を写します (X,〇)、(X',〇')、(X'',〇'') をそれぞれ 〇, 〇', 〇''を開集合系とする位相空間 f:X→X' g:X'→X'' を連続写像とする 問:Y⊂X がコンパクトであるとき f(Y) がコンパクトになることを証明せよ 答:ц={U(λ)|λ∈Λ} を f(Y) の開被覆とすると f が連続写像であることより ц'={f^(-1)・(U(λ)) |λ∈Λ} は Y の開被覆となる Y はコンパクトであるから,ある ц' の部分被覆 {f^(-1)・(U(λ1))、f^(-1)・(U(λ2))、…、f^(-1)・(U(λn))} が存在する。このとき {U(λ1)、U(λ2)、…、U(λn)} が ц の部分被覆になるのは容易に分かるので f(Y) はコンパクト ■ この最後のところで、どうして {U(λ1)、U(λ2)、…、U(λn)} が цの部分被覆になるのかが分からないので教えて欲しいです。 よろしくお願いします。別解などありましたら歓迎です。

  • 位相空間の同相について

    位相空間(X,Ox)と(Y,Oy)で、全単射f:X→Yに対して、fおよび逆写像f^(-1)がともに連続であるときfを位相写像といい、f:X→Yなる位相写像が存在するとき、(X,Ox)と(Y,Oy)は同相(同位相)であるというのでした。 位相空間(X,Ox)に対し、直積空間X×Xに適当な位相O’を入れたとき、 (X×X , O')と元の位相空間(X,Ox)は同相ではないと思うのですが、証明はどのようにしたらいいでしょうか。 位相写像が存在しない、ということを言えばいいと思いますが、存在しない、ということをどのように示したらいいのかがわかりません。 よろしくお願いします。

  • 位相空間についての質問です。

    位相空間(T,Ot)(Tは集合でOtは位相)として、a,b,cはTの元とします。 連続写像φ:[0,1]→T、φ(0)=a、φ(1)=bが存在して、 連続写像ψ:[0,1]→T、ψ(0)=b、ψ(1)=cが存在するとします。 このとき、連続写像g:[0,1]→T、g(0)=a、g(1)=cは存在するのでしょうか? もし存在するなら証明してほしいです。 自分の持ってる教科書の連続写像の定義は、 f:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔f(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、f(V)Uとなる。 と定めています。 一応、自分で考えたのは、 g:[0,1]→T、g(x)=φ(2x)(0≦x≦1/2)、g(x)=ψ(2x−1)(1/2≦x≦1)なのですが、x=1/2で連続なのかわかりません。g:[0,1/2]→T, g:[1/2,1]→Tは連続だと思います。 g(1/2)∈Uとなる開集合U⊂Tを任意に取ります。 g:[0,1/2]→Tの連続性から1/2∈V1、V1⊂[0,1/2] となる開集合が存在してg(V1)⊂Uで、 g:[1/2,1]→Tの連続性から1/2∈V2、V2⊂[1/2,1] となる開集合が存在してg(V2)⊂Uとなる事はわかります。 V1もV2も[0,1]の相対位相の元なので、V1UV2は、[0,1]の開集合となるのかわからないです。 (V1もV2も[0,1]の位相の元([0,1]の開集合)ならば、V1UV2は、[0,1]の開集合となる事はわかります。)

  • 位相空間への全射について

    位相空間への全射について 位相空間と写像について学習している者です。 質問させていただきます。 -- 集合Xから位相空間(Y,μ)への全射fがあるとき、 Т = {(1/f)(U)|U∈μ}とおくとき、ТがX上の位相であることを証明せよ。 ※(1/f)はfの逆関数を示します。 -- これを証明したいのですが、道筋が見えません。。。 ご教授よろしくお願いいたします。

  • 連続関数の定義に関して(位相空間)

    「定義 (X、O_X)、(Y、O_Y)を位相空間とする。写像f:X→Yが連続であるとは、U \in O_Y→f~(-1)(U)\in X を満たすことである。(ただし、A\in Bは、AがBに含まれているという意味とする)」 と”連続”の定義が位相空間論の本には載っていて、この定義がε-δ論法での連続の定義と同じであることが一般に言われていますが、どうして位相空間論における連続の定義では、f^(-1)の存在を特に何の指定もなく認めてしまっていいのか、その辺りがよくわかりません。もしもわかっている方がいらっしゃれば、お教えいただけないでしょうか?

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • 位相と連続

    何度か、このサイトで位相に関して質問をしている初学者です。 おかげさまをもちまして、理解が進んだと感じています。 さて位相の言葉を使うと、 「位相空間Yの開集合Vのfによる逆写像 f^{-1}(V)=UがXの開集合である場合、f : X→Y は連続」 などというと思いますが、この表現と通常のイメージでいうところの関数の連続/不連続とを対応させて理解を進めたいと思っています。 以下、1次元Euclid空間 X から 1次元Euclid空間 Y への写像 f : X→Yを考えます。 1)x=0でジャンプする関数(x=0で定義されている) : f(x)=x (x <= 0), f(x)=x+1 (x>0) この場合、たとえば (1/2, 3/2) のf による逆写像は f^{-1}((1/2, 3/2)) = [0, 1/2) となります。これは X の開集合ではないので、f(x)は不連続。 2)x=0でジャンプする関数(x=0で未定義): f(x)=x (x < 0), f(x)=x+1 (x>0) 【質問】 ●(1)の考え方、論証はこれで正しいでしょうか。 ●(2)を(1)のと同様の論理で考える場合、 「Yの下位集合 *** の f による逆写像 f^{-1}(***) が Xにおける開集合でないので、f は不連続」 となると思いますが、この場合 *** はどういった集合になり、どういう理屈で逆写像はXの開集合ではない、と結論付けられるのでしょうか。 (x=0で定義されていないので、Xの位相がいわゆる1次元Euclid位相ではない?) 以上、ご教示よろしくお願いします。

  • すみませんもう1問お願いします

    位相空間の質問です (X,O)を位相空間、A⊂Xを空でないコンパクト集合とする。任意の実数値連続写像 f:A→R^1はA上で最大値と最小値をもつことを 示したいです。教えてください