• ベストアンサー
  • すぐに回答を!

内接円の問題

3点 A(0,4) B(2,0) C(-1,3)を頂点とする△ABCの内接円の方程式はどのように求めればよいのでしょうか。 内接円の半径は求めることが出来るのですが、円の中心の出し方がいまいちよくわかりません。 出来れば解答とその過程、考え方を教えていただけると助かります。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数498
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
  • BBblue
  • ベストアンサー率24% (14/57)

角の2等分線の交点が内接円の中心になるわけですが、 一般には角の2等分線の方程式を求めるのは結構大変です。 この場合は運良くACの傾きが1、BCの傾きが-1 ということからAC、BCは x軸 に対して±45°の角度をなしているので、Cを通りx軸に平行な直線 y=3 が角の2等分線であることがいえます。 このことから、中心の座標を ( a,3 )とおき、いずれかの直線までの距離が半径に等しくなることを使うのがいちばん早いのではないかと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • おうぎ形の内接円て・・・

    平面上に3点A,B,CがありAB=BC=CA=1である。点Bを中心に半径1の弧ACをかく、このとき線分BC,弧CA、線分ABに内接する円の半径を求めよという問題でおうぎ形の内接円の半径の求め方ってありますか? またさらに点Cを中心に半径1の弧ABをかく。 このとき線分BC、弧CA、弧ABに内接する円の半径を求める問題、そして点Aを中心に半径1の弧BCをかいてこのとき弧BC,弧CA,弧ABに接する内接円の半径はどうやって求めればいいでしょうか?できれば詳しく教えていただけるとありがたいです

  • 外接円から見た内接円の角度は?

    すみません。 私自身の三角関数の再確認なんですが、 正方形に外接する円の一点から内接する円の直径を見た時の角度は、次の考え方でいいですか? 正方形の一辺を2とすると 内接円の半径が1 外接円の半径が√2 なので、 外接円の一点(a)と内接円の中心(b)と内接円の直径との交点(c)で できる三角形abcは、 ab=√2 bc=1 ゆえに tan(θ)=1/√2≒0.7071 のθを求めて、その角度を倍すればいいと思うのですが。 ちなみに、70.528度という答え。あってますか。 よろしくお願いします。

  • 内接円

    辺の長さがそれぞれAB=c、BC=a、CA=bで∠Aが直角である直角三角形ABCの内接円の半径rをa、b、cで表せ 初めから解き方を教えてください

その他の回答 (3)

  • 回答No.3

内接円の半径は求めることことができたと思います。 中心の座標を求める方法として 直線ACに平行でACとの距離が半径である直線 直線BCに平行でBCとの距離が半径である直線 以上の2直線の交点を求めればできます。 ACの傾きは1、BCの傾きは-1なので計算としてはさほど大変ではないと思います。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

三角形の内心はどのように計算するかがわかれば解けますね。 三角形の各頂点の二等分線が交わるところが内心、つまりは三角形に内接する円の中心です。 がんばってね。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

3点がわかっていますよね。そうするとAB,BC,CAの直線の方程式は出ます。 それで円の中心をIとして座標を(x,y)とするとIは内接円の中心だから、点Iから直線AB,BC,CAへ至る距離が等しい。そういう点I(x,y)を計算してみてはいかがですか? 考え方だけですが。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 内接円の半径の求め方を教えてください。

    △ABCにおいて、sinA:sinB:sinC=7:8:13が成立し、 △ABCの面積が56√3であるとき△ABCの内接円の半径を求めよ。 この問題の解き方&計算の仕方&答えをどなたか導いてくださいませんか? お願いします。

  • 三角形と内接円の問題

    △ABCとその内接円があり、内接円と辺BC、CA、ABとの接点をそれぞれD、E、Fとする。 (1)AF=x、BD=y、CE=zとする。△ABCの面積Sと内接円の半径rをx、y、zで表せ (2)Iを内接円の中心とする。  P=(AB・BC・CA)/(AI・BI・CI)の最小値を求めよ。 x、y、zを正の数とすると不等式 (x+y+z)/3 ≧ xyzの三乗根 が成り立つことは用いてよい。 という問題に取り組んでいます。 (1)はヘロンの公式を利用して、 S=√(xyz)(x+y+z)、r=√(xyz)/(x+y+z) と一応なりました。 (2)なのですがAI、BI、CIなどをそれぞれ三平方の定理をもちいて出して代入してみると複雑でうまく計算できませんでした。何かいい方法はありませんでしょうか 回答いただけるとありがたいです。 宜しくお願いします

  • 内接円・外接円

    内接円・外接円  座標平面上に、点C(4,0)を中心とする半径2の円Oと点A(-2,0)がある。  点Aを通る円Oの接線の中で、正の傾きを持つ接線をl、負の傾きを持つ接線をmとする。  接線lと円Oの接点をPとする。  このとき、次の問いに答えなさい。 (1)線分APの長さを求めなさい。 (2)△ACPの外接円の半径を求めなさい。 (3)△ACPの内接円の半径を求めなさい。 (4)接線lの傾きを求めなさい。 (5)接線lと接線mのなす角をθ(0<θ<(1/2)π)とする。tanθの値を求めなさい。  

  • 外接円と内接円

    もう一つ分からない問題があったので教えてください。 AB=ACである二等辺三角形ABCにおいてBC=2であり、頂点AからBCに下ろした垂線の長さが2であるとする。 このとき△ABCの外接円と内接円の半径を求めよ。 という問題です。 お願いします。

  • 内接円が2つの円錐

    図がうまくかけず、球が内接しているようにみえませんが、内接しています。 問題 右図のような高さが12cm、底面の半径が5cmの円錐に内接する球S1がある(大きい方)。さらに、球S1と円錐に接するS2がある。(小さい方) 球S2の半径を求めよ。  この問題で、△ADE∽△ABCで、相似比より内接円の半径を求めていました。 なぜ、、△ADE∽△ABCの比と球の相似比が一致するとわかるのですか??

  • 数学A 内接円の問題です

    下の図において、xの値を求めよ。ただし、△ABCの内接円が辺BC、CA、ABと接する点をそれぞれP、Q、Rとする。 途中式なども含めた回答が頂けると助かります。よろしくお願いします。

  • 三角形と内接円・内心

    三角形ABCにおいて、AB=7、BC=3である。この三角形の内心をIとする。AIの延長と辺BCとの交点をDとし、BIの延長と辺ACとの交点をEとする。4点C,E,I,Dは同一円周上にある。 1)角BCAの大きさ及び、線分CAの長さを求めよ。 2)BDの長さ及び、BI*BEの値を求めよ。 3)三角形ABCの内接円の半径を求めよ。 以上が問題です。三辺や二辺+一角が与えられた内接円関連の問題は解いたことがあるのですが、条件が二辺ではどのようにしたらよろしいでしょうか?

  • 内接円について

    3cm、4cm、5cmの直角三角形があるとして中に円が各辺に接しているとする。このときの円の半径を出せって言われたら、普通は 三角形の面積=各辺の和×円の半径÷2から算出しますよね。 では、この三角形の中に、横に一列にn個の円が並んでいて(全て同じ半径の円、その半径をnを使ってあらわせって言われたらどうやってだしますか? 三角形ABCを書いて、一番頂点をAとして、時計周りにBCと頂点を定めます。角度A=90度、AB=4cm、BC=5cm、CA=3cmです。 いま、BCに接する円がn個あり、右端の円が、ABとBCに接していて、左端の円が、BCとCDに接しているとします。右端の円の中心をOR、左端をOLとすれば、頂点AとOR、OLを結び、ORとOLも結びます。端っこと真ん中に三角形そして、下に台形ができたので、この面積と直角三角形の面積が等しい事を利用して半径を算出する方法を考えたのですが、あまりうまいやり方ではないようなきがします。ほかに何か出す方法ってありますかね?

  • 円について・・・

    A(-1,0),B(2,0),C(1、√3)として、 三角形ABCがあるとき、内接円の中心と半径を求めたいのですがどうすればいいのでしょうか? なにか、よい公式などあるのでしょうか?

  • 内接円の定義?(っていうのでしょうか)

    すみませんが内接円(っていうのでしょうか)についての 質問です。 ネット検索しましたが、三角形や正n方形での求め方 しか見つからず苦労しています。 ある図形の中で一番大きな円が書けるときの円の直径 というのを求めたいのです。 三角形や正n方形での内接円とは同じ値になると思います。 たとえば長方形では短辺の長さですよね。 平行四辺形では、三角形に2つに分けたときの高さ、 では菱形では?というところで悩んでいます。 辺の長さ=A、小さい角度=Bの時の 内接円の直径の求め方、教えてください。