• ベストアンサー
  • すぐに回答を!

円の性質

三角形ABCの内接円と三角形ADCの内接円が点Pで外接している。 AB=a BC=b CD=c とするとき、ADの長さをa,b,cで表せ。  の解答をお願いします。

noname#233652
noname#233652

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数132
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

この状況を正しく作図してください。 ポイントは⊿ABCの中心をO,⊿ADCの中心をO’とすると、ACが内接円O,O'の共通接線になっているということです。 よって作図はAC上の点Pで接する円O、O'を描いて、これらの円に外接するように⊿ABC,⊿ADCを書くとうまく書けます。 問題の答えは簡単です。 辺ABと円Oの接点をC'、辺BCと円Oの接点をA'、辺CDと円O’の接点をA''、辺ADと円O’の接点をC''、 AC'=AP=AC''x,C'B=BA'=y,CA'=CP=CA''=z,DA''=DC''=u とすると x+y=a   (1) y+z=b   (2) z+u=c   (3) のとき AD=x+u を求めるものです。 (1)+(3)-(2)より AD=x+u=a-b+c

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 解決頼みます。 賢い方

    三角形ABCにおいて、AB=4、BC=2、CA=3 とする。そして、点Dは三角形ABCの外接円の点Bを含まない弧CA上に、AD:DC=5:8であるようにとる。2直線AD、BCの交点をEとする。このとき、三角形ABEの内接円の中心をI、2直線AC、BDの交点をFとするとき、三角形EIFの面積は??

  • 数1 円の性質

    こんばんわ、まだ高2になってないのに学校では数2・bに入って焦ってます(汗 えっと今回アドバイスしてほしい問題は  三角形ABCがあって、AB=3、∠A=120°外接円の半径が7√3/3(3分の7ルート3)です。 1、辺のBCの長さ 2、辺ACの長さ 3、三角形ABCの内接円の半径、また内接円の中心をI  とするとき、線分AIの長さ 1は正弦定理を使うと思うんですが、答えは7と思うんですが・・・・。 2、1の「7」を代入すると思うんですが、どうしてもルートが邪魔で因数分解できないです・・・。 アドバイスお願いします・・m(_)m

  • 数学の図形の性質などで三角形の外接円がうまくかけま

    数学の図形の性質などで三角形の外接円がうまくかけません。 例えば次のような問題 三角形ABCにおいて、AB=AC=5、BC=√5とする。辺AC上に点DをAD=3となるようにとり、辺BCのBの側の延長と三角形ABCの外接円との交点でBと異なるものをEとする。 についてですが、外接円が歪んで円になりません。書きやすい方法とかってありますか?

  • 外接円から見た内接円の角度は?

    すみません。 私自身の三角関数の再確認なんですが、 正方形に外接する円の一点から内接する円の直径を見た時の角度は、次の考え方でいいですか? 正方形の一辺を2とすると 内接円の半径が1 外接円の半径が√2 なので、 外接円の一点(a)と内接円の中心(b)と内接円の直径との交点(c)で できる三角形abcは、 ab=√2 bc=1 ゆえに tan(θ)=1/√2≒0.7071 のθを求めて、その角度を倍すればいいと思うのですが。 ちなみに、70.528度という答え。あってますか。 よろしくお願いします。

  • 円の性質

    三角形ABCの頂点Bを通る円と頂点Cを通る円が辺BC上の点Pと三角形ABC内の点Qで交わっている。辺AB,ACと2つの円との交点をそれぞれR,Sとするとき、四角形ARQSは円に内接することを証明せよ。   の解答をお願いします。

  • 三角形に内接する円の問題が分かりません。

    塾の宿題で出たのですが、全く分からなくて困ってます。 分かりやすく説明していただければありがたいです。 三角形ABCの辺BC上に一点Dをとる。三角形ABC、三角形ACDの内接円をそれぞれ円O、円Oプライムとするとき、2円はAD上の点Eで外接した。AB=10、AC=8、BC=9、AE=a、ED=bとするとき、 1)a-bの値を求めよ。 2)三角形ABDと三角形ACDの面積比を求めよ。 という問題です。(中3の問題です) ご回答お願いします! なぜか画像が載せられません。 申し訳ありません。

  • 三角形と内接円について

    まず、三角形ABCがあります。底辺がBCです。内接円があって接点はそれぞれd、b、aとなります。ちなみに内接点の接点は辺ABにd、辺ACにb、辺BCにaがあります。頂点Aちょうど真下に点Mがあるとすると直角三角形ABMと三角形MBCの出来上がりです。このうち辺AdとAbの勾配はそれぞれ30‰、20‰です。このとき、辺dbの長さはどのようにして求めなければいけないですか。後勾配は角度変換しなければならないですか。

  • 外接円と内接円

    もう一つ分からない問題があったので教えてください。 AB=ACである二等辺三角形ABCにおいてBC=2であり、頂点AからBCに下ろした垂線の長さが2であるとする。 このとき△ABCの外接円と内接円の半径を求めよ。 という問題です。 お願いします。

  • 線分ABを直径とする円の円周上に三角形ABCの内接

    線分ABを直径とする円の円周上に三角形ABCの内接円の半径が最大となるように点Cをとる。 このとき、三角形ABCは二等辺三角形になりますか?

  • 三角形と内接円について

    まず、三角形ABCがあります。底辺がBCです。内接円があって接点はそれぞれd、b、aとなります。ちなみに内接点の接点は辺ABにd、辺ACにb、辺BCにaがあります。頂点Aちょうど真下に点Mがあるとすると直角三角形ABMと三角形MBCの出来上がりです。辺ABと辺ACの勾配はそれぞれ20%、30%です。 まず、円弧dbの長さはどのようにして求めなければいけないですか。後勾配は角度変換しなければならないですか。