• ベストアンサー
  • 困ってます

図形と計量

解答がなく困ってます。どなたか添削お願いしますm(_ _)m 円に内接する四角形ABCDにおいて、AB=4、BC=3、CD=1、∠ABC=60゜のとき、次の値を求めなさい。 1.ACの長さ 2.∠ADC=θとおくとき、cosθ 3.ADの長さ 4.円の半径 5.四角形ABCDね面積 *自己解答* 1.余弦定理より AC^2=AB^2+BC^2-2*AB*BC*cosB→AC=√13 2.円に内接する四角形なので、∠ABC+∠ADC=180゜→∠ABC=60゜→∠ADC=120゜となる。よってcos120゜=-1/2 3.余弦定理より AC^2=CD^2+AD^2-2*CD*AD*cos120゜→AD=-4,3→AD≧1なので AD=3 4.正弦定理より AC/sin60゜=2r(外接円の半径rとする)→r=√13/√3 5.四角形ABCDの面積=△ABC+△ADCである。 【△ABC=1/2*AB*BC*sin60゜】+【△ADC=1/2*AD*DC*sin120゜】={15√3}/4 社会人になってからの勉強です。 間違いがありましたら 解説と併せてよろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数110
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

すべてあっていると思います

共感・感謝の気持ちを伝えよう!

質問者からのお礼

添削ありがとうございましたm(_ _)m 助かりました♪

関連するQ&A

  • 図形と計量

    円に内接する四角形ABCDにおいて、AB=4 BC=3 CD=1 ∠ABC=60s の時 1.ACの長さ 2.∠ADC=θとおくとき cosθ 3.ADの長さ 4.円の半径 四角形ABCDの面積 上記の問題の解答 解説がなく、解けても合ってるのか分かりません(*_*) よろしくお願いします。

  • 図形の計量の問題です・・・。

    問題)四角形ABCDは,AB=3,BC=2,CD=4を満たし,円C1に外接し,円C2に内接している。このときDAを求めよ。 ※やり方が全然分からなくて…。余弦定理を使えますか? お願いします。

  • 図形

    AB=6、AC=3、∠A=120度の△ABCにおいて、∠Aの2等分線と辺BCとの交点をDとし、△ABCの外接円と直線ADのA以外の交点をEとするとき、DEの長さを求める方法を教えてください △ABCを余弦定理で求めると (BC^2)=(6^2)+(3^2)-2*3*6*(cos120度) =63 BC=3√7 までは考えたのですがその後が分かりません

  • 図形と計量

    △ABCにおいて、∠Aの二等分線と辺BCの交点をDとする。 AB=c, AC=b, AD=dとおく。 ∠BADをθとするとき、cosθをc,b,dで表せ。 という問題です。 △ABDにおいて余弦定理を使いたいのですが、辺BDの長さが求められないので使えないです。 このやり方であっていますか? だとすると、辺BDの長さはどうして求めるのか教えてほしいですm(__)m ちなみに、この前の問題で… 角の二等分線と比により、BD:DC=c:b ということは、示しています。

  • 図形と計量

    よろしくお願いします 円に内接する四角形ABCDがある AB=4 BC=5 CD=7 DA=10のとき、sinAとこの四角形ABCDの面積を求めよの問題で 解答中  四角形ABCDは円に内接するからC=180°-A △ABDにおいて余弦定理より BD^2=116-80cosA…(1) △BCDにおいて余弦定理より BD^2=74+70cosA …(2)    (1)(2)より116-80cosA=74+70cosA  ゆえにcosA=7/25 となっていますが(1)(2)から求まるcosA=7/25は必ず答えにしてよいのでしょうか? ここでの論理の流れの理解がすっきりしません この問題では BD>0、-1<cosA<1のもとで  (1)かつ(2)⇔cosA=7/25かつBD^2=468/5⇔cosA=7/25かつBD=√(468/5) とするのが正しいような気がするのですがどうしてBD存在には触れずに解答してしまっているのですか?煩雑さを回避するためですか? もしくわ (1)かつ(2)からもとまる必要条件によってcosA=7/25に絞る そして図形を描くと1つ存在することがわかる、だからこれを答えとしているのですか? つまり必要条件から1つにしぼることができ、かつ内接四角形を書いてみると確かに四角形は固定されていてこれをみたすcosAは1つ、だからそのcosAはcosA=7/25となるのですか? もしかするとこうゆうsinやcosや面積などを求めるときは 証明の問題と同様に一方通行の議論でこたえをしぼっていくのですか? だとしてもそのでてきた値が本当に題意を満たすのかの確認はどの段階で行えばよいのでしょう?                                                            ちょっと混乱しています、どなたかよろしくお願いします。                     

  • 至急!数学I 図形と計量です・・・

    半径Rの円Oに内接する四角形ABCDが、 AB=AD=√3、cos∠BAD=-1/3,cos∠ABC=√3/3 を満たしている。 (1)BDの長さと半径Rを求めよ。 (2)sin∠ABCの値、AC,CDの長さを求めよ。 答えはBD=2√2、R=3/2 sin∠ABC=√6/3、AC=√6、CD=1 です。解説がまったくないのでわかりません>< だれかわかりやすくおしえてください>< お願いしますmm

  • 三角比

    四角形ABCDにおいて、AB=6、BC=5√2、CD=5√2、DA=8とし、∠DAB+∠BCD=180°とする。次の空欄を埋めなさい (1)cos∠DAB=(1)であり、△ABDの外接円の半径は(2)である。 (2)cos∠ABC=(3)、sin∠CDA=(4)である。 (1)~(4)が全然わかりません。 今まで余弦定理などをつかって∠Aを求めたりしたことはあるのですが、なぜここでcosがでてくるのか。答えが(1)0(2)5(3)-√2/10(4)7√2/10となっているのですが、その根拠、解き方がちんぷんかんぷんで・・・

  • 図形についての問題を教えてください。

    三角形ABCがあり、AB=5、BC=6、cosA=1/8である。 (1)sinAの値を求めてください。また、三角形ABCの外接円の半径を求めてください。 (2)辺ACの長さを求めてください。 (3)辺Aから直線BCに垂線を引き、交点をHとするとき、線分AHの長さを求めてください。 また、三角形ABCの外接円の中心をO,直線AOと直線BCの交点をDとするとき。OD/ADの値を求める問題を解いてみると、 (1)sin(二乗)A+cos(二乗)A=1より sin(二乗)A=1-(1/8)(二乗) =1-1/64 =63/64  sinA>0より    sinA=3√7/8 外接円の半径をRとする、     2R=a/sinA 2R=6/3√7/8 R=6÷(2×3√7/8) =6÷6√7/8 =8/√7      =8√7/7 (2)余弦定理より  AC(二乗)=BC(二乗)+AB(二乗)-2×BC×AB×cosA =6(二乗)+5(二乗)-2×6×5×1/8 =36+25-30      =4   AC>0より     AC=2まではなんとかできたのですが、ここから解らないので教えてもらえませんか?  途中式も含めてわかりやすく教えてください。

  • 図形の計量

    円Oに内接する四角形ABCDがあり、AB=4、AD=5、cos∠BAD=-1/5である。また、対角線ACとBDは点Eで垂直に交わるとする。 これは、BD、△ABDの面積、AE、円Oの半径、BC、四角形ABCDの面積とを順番に求めていくものなのですが、BCを求める段階で行き詰まっています。 現段階で解っている答えは、BD=7、△ABD=4√6、AE=8√6/7、円Oの半径=35√6/24です。どうやって導き出すか教えてください。よろしくお願いします。

  • 三角比の問題を教えてください。

    問題:「四角形ABCDが半径8分の65の円に内接している。この四角形の周の長さが44で、辺BCと辺CDの長さがいずれも13であるとき、残りの2辺ABとADの長さを求めよ。」 ↑この問題の解き方があっているかどうか、教えてください。間違っていたら指摘お願いします。 ―――――――――――――――――――――――――――――――― AB=Xとおくと、AD=18-X 円の中心をOとする  △BOCで余弦定理により、cos∠OBC=5分の4       (sin∠BOC)二乗+(cos∠BOC)二乗=1より、 (sin∠BOC)2乗=25分の9 sin∠BOC>0より sin∠BOC=5分の3  △BOC=2分の1×8分の65×13×sin∠BOC     =16分の507 点Cから辺BDに垂線を引き、辺BDとの交点を点Hとすると、 △BCDはBC=CDの二等辺三角形なので、HB=HD △BOC=2分の1×8分の65×HB=16分の507 HB=5分の39 よってBD=2×5分の39=5分の78 △BCDで余弦定理により、BD2乗=(13)二乗+(13)二乗 -2×13×13×cos∠BCD cos∠BCD=325分の91 四角形ABCDは円に内接しているので∠BCD=180度-∠BAD よってcos∠BAD=-cos∠BCD=-325分の91 △ABDで余弦定理により、 BD2乗=X2乗+(18-X)2乗-2×X×(18-X)× cos∠BAD X=4、X=14 ∴AB=4、AD=14またはAB=14、AD=4