• 締切済み
  • すぐに回答を!

円に内接する三角形

xy座標平面上で原点Oを中心とする半径1の円Oに正三角形ABCが内接していて、三点A、B、Cはその順に反時計回りに位置している 点Aのx座標、y座標は正とする 直線ACとy軸は点Dで交わっており、点Dを通る円Oの点Eでの接線は直線BCに平行である このとき、∠DEAが90゜らしいのですがこれは何故ですか? 図を描いてみましたが、全く90゜に見えません 回答お願いします

noname#174095
noname#174095

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数349
  • ありがとう数0

みんなの回答

  • 回答No.4

#1です。 点Eを定義してください。

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • yyssaa
  • ベストアンサー率50% (747/1465)

∠DEOが90゜。 直線ACとy軸は点Dで交わっており、点Dを通る円Oの点Eでの接線・・・ これも間違い。直線ACの延長線じゃないかな? 直線ACとy軸が点Dで交わったら点Dは円Oの内部にあり、Dを通る接線とは何ぞや?

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • yyssaa
  • ベストアンサー率50% (747/1465)

∠DEAが90゜らしい・・・の根拠は?

共感・感謝の気持ちを伝えよう!

質問者からの補足

回答です

  • 回答No.1

>点Dを通る円Oの点Eでの接線 意味不明です。

共感・感謝の気持ちを伝えよう!

質問者からの補足

点Eでの円Oの接線が点Dを通るということです

関連するQ&A

  • 内接円・外接円

    内接円・外接円  座標平面上に、点C(4,0)を中心とする半径2の円Oと点A(-2,0)がある。  点Aを通る円Oの接線の中で、正の傾きを持つ接線をl、負の傾きを持つ接線をmとする。  接線lと円Oの接点をPとする。  このとき、次の問いに答えなさい。 (1)線分APの長さを求めなさい。 (2)△ACPの外接円の半径を求めなさい。 (3)△ACPの内接円の半径を求めなさい。 (4)接線lの傾きを求めなさい。 (5)接線lと接線mのなす角をθ(0<θ<(1/2)π)とする。tanθの値を求めなさい。  

  • 円に内接する四角形に内接する円

    円と接線に関する問題がわからないので質問します。 半径5cmの円Oと半径2cmの円O'の共通外接線Lと共通内接線Mとがあり。円O,O'と接線Lとの接点P,P'とし、円O,O'と接線Mとの接点R,Sとする。LとMの交点Qとして、OO'=9cmとするとき、四角形OPQRに内接する円の半径を求めなさい。という問題です。 解説でわからない点は、四角形OPQRに内接する円の中心はOQ上にあるということです。半径5cmの円Oと四角形OPQRに内接する円の相似の中心はQだからかと思いましたしが、納得できません。どなたか、四角形OPQRに内接する円の中心はOQ上にあるということを説明してください。お願いします。

  • 円に内接する正三角形

    半径10の円に内接する正三角形の面積の求め方を教えてください。

  • 円の問題解き方教えてください

    円の問題です 座標平面上に中心が(2,2)で半径が1の円Cと、原点を通り傾きがmの直線Lがある。 (1) 円Cと直線Lが異なる2点で交わるためのmの値の範囲を求めてください。 (2) 円Cと直線Lの2つの共有点と点Cの中心とでできる三角形の面積が最大となるようなmの値を求めてください。 わかるかた、詳しく教えてください。お願いします。

  • 至急お願いします

    数学IIの問題なのですが・・・                                                              xy平面上の円 x二条+y二乗-6y+81=0が与えられている。また、点A(p , q)および点B(s , t)がこの円外を動く。                                                      (1)原点O(0 , 0)からこの円に引いた接線の方程式を求めよ。                                                                                     (2)△OABがこの円を内接円としてもつ直角三角形となるとき、直線ABの方程式を求めよ。 ただし、q<tとする。 (2)のヒントで直角となる角は2通り考えられる できれば今日中におねがいします。

  • 円に内接する三角形の面積が最大のときの三角形の形の証明

    【問題】 平面上の点Oを中心とし半径1の円周上に相異なる3点A、B、Cがある。 三角形ABCの内接円の半径rは1/2以下であることを示せ。 rが最大のときは円の面積が最大。そのときの三角形ABCは正三角形だと 予想できるのですが、証明の仕方がわかりません。 わかる方教えてください。お願いします。

  • 三角形に内接または外接する円。

    三角形に内接または外接する円。 正三角形を作図しその三角形に内接または外接する円の描き方を可能かどうかふくめてください。 もしできましたらどのような仕組みでそれが可能または不可能なのかをおしえてください。 回答レベルはよこやまあつしさん向けにおねがいします。

  • 円に内接した三角形の面積

    半径√2 の円に3角形ABCが内接しており、∠BAC=90°です。 3角形ABCの面積をSとするとき、Sのとりうる値の範囲を求めなさい。 三平方の定理を使うのでしょうか?・・・

  • この問題教えてください!

    この問題教えてください! k>0とする。原点をOとする座標平面において, 2点A, Bは曲線y=(1/k)x^2上にあり, かつ△OABは正三角形とする。また, △OABの内接円をSとし, Cをその中心とする。 (1) 中心Cの座標を求めよ。 (2) 円Sの方程式を求めよ。 (3) Tを中心D(3k, -2k), 半径kの円とする。T上の点Pから円Sへ2本の接線を引いて, その接点をE, Fとする。線分CPの長さをtとして, 内積CE•CFをkとtを用いて表せ。 (4) 点Pが円T上を動くとき, 内積CE•CFの最大値と最小値を求めよ。

  • 数学 円

    座標平面上に中心が(2、2)で半径が1の円Cと、原点を通り傾きがmの直線lがある。 (1)円Cと直線lが異なる2点で交わるためのmの値の範囲を求めよ。 (2)円Cと直線lの2つの共有点と円Cの中心とでできる三角形の面積が最大となるようなmの値を求めよ 解き方を教えてください