• ベストアンサー
  • すぐに回答を!

数学 集合と写像の問題 回答・解説お願いします。

数学 集合と写像の 過去問ですが、回答がないので困っています。 よろしくお願いします! 前回質問させていただきましたが、問題に打ち間違えがありましたので再度修正して 質問いたします。 ミスをご指摘いただいた方ありがとうございました。 X={3,4,5} Y={5,6,}とする。 (1) YからXへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからXへの写像で全射であるものを全て求めよ。 (5) (4)で求めた写像 f で合成写像 f2=f○fが恒等写像となるものを全て求めよ。 (6) YからYへの写像で単射であるものを全て求めよ。 (7) (6)で求めた写像 f で合成写像 f3=f○f○fが恒等写像となるものをすべて求めよ。  数学が うまく変換出来ませんでしたので、わかりにくいと思いますが、よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数401
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

(1) 写像 f:Y→X が単射とは ∀y,y'∈Y(y≠y' ⇒ f(y)≠f(y'))となることです。言葉で簡単に言うと、y∈Yのyが違えばその対応する値f(y)とf(y')も異なるということです。  ですから、f(5)=3,f(6)=3 のような写像は単射ではないわけです。 (2) 写像 g:X→Y が全射とは(∀y∈Y)(∃x∈X) (g(x)=y)となることです。言葉で簡単にいうと、Yにすべての元が写像fによってxに対応しているということです。  ですから、g(3)=5,g(4)=5,g(5)=5のような写像は全射ではないわけです。(Yの6がどれにも対応づけられていない) (3) 写像f:A→B,写像g:B→Cが与えられているとする。ことのき、∀a∈Yに対して、集合Cの元cをg(f(a))で定めること。このとき、写像h=g○fで表す。 後は教科書等をしっかりよんで勉強してください。がんばって。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

早速の回答ありがとうございます。 文系(商学部1年)の必修科目なのですが、まともな教科書がなく参考書を買おうかと思っていました。 出席もゆるく、ほとんどの人が、試験前にこのような状態です。 この期末で、終わるので単位が来るように 頑張ります。 また質問をする予定ですので、よろしくお願いいたします。 ありがとうございました。

関連するQ&A

  •  集合と写像 の問題解説お願いします

    数学の集合と写像について教えてください。 期末試験の過去問なのですが、解説・回答がなくて困っています! 試験直前なので どうぞよろしくお願いします。 X={3,4,5}  Y={5,6,}とする。   (1) XからYへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからYへの写像で全射であるものを全て述べ、その写像 f2 = f. ○ f が恒等写像となるも   のを全て求めよ。 (5) XからYへの写像で単射であるものを全て述べ、その写像 f3 = f ○ f ○ f が恒等写像とな   るものを全て求めよ。 解説も付けていただけるとたすかります。 よろしくお願い致します。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 逆写像の条件について

    集合Uから集合Vへの写像fが全単射なら 逆写像f^{-1}が存在し、f^{-1}は全域写像になりますが、 f^{-1}の逆対応はfなので、f^{-1}は全単射で、 fは全域写像になるのでしょうか? また、集合Uから集合Vへの部分写像fが逆写像をとる条件を単射とした場合は 合成写像f◦f^{-1}がUの恒等写像にならないですよね?

その他の回答 (1)

  • 回答No.1

>Y={5,6,}   6の後にカンマが相変わらず入っています。愛嬌としましょう。 (1)(2)(3)は単射・全射・合成写像の意味がお分かりなら自力でできるはずです。 (4) f:X→X が全射であれば、定義域と終域の元数が等しいので単射でもある。よってXの元1,2,3に対してXの元を並べ替えたものに対応させれば良いので、3!通りある。   写像1:f(3)=3,f(4)=4,f(5)=5   写像2:f(3)=3,f(4)=5,f(5)=4   写像3:f(3)=4,f(4)=3,f(5)=5   写像4:f(3)=4,f(4)=5,f(5)=3   写像5:f(3)=5,f(4)=3,f(5)=4   写像6:f(3)=5,f(4)=4,f(5)=3 (5) (4)のうちf2=f○fが恒等写像となるのは、写像1,2,3,6 (6) f:Y→Y が単射であれば、定義域と終域の元数が等しいので終域は値域となる。なので全射。結局(4)と同様に考えて、2!通りある。   写像1:f(5)=5,f(6)=6   写像2:f(5)=6,f(6)=5 (7) (6)のうちf3=f○f○fが恒等写像となるのは、写像1

共感・感謝の気持ちを伝えよう!

質問者からのお礼

再度にわたりご丁寧な回答をありがとうございました。 そして再度のミス入力申し訳ありませんでした。 それほど、理解度が低いのです。お恥ずかしい限りです。 ただ(1)(2)(3)もよく理解できていないのです。 できれば教えていただけないでしょうか? よろしくお願いいたします。

関連するQ&A

  • 写像の問題なのですが…

    写像の問題なのですが… Rで実数全体の集合を表す。 f1,f2,f3,f4,f5,f6,f7をそれぞれ次の式で定義されたRからRへの写像とする。 f1(x)=x-2 f2(x)=x^2 f3(x)=x^3 -4 f4(x)=x^3 -4x f5(x)=e^x f6(x)=f2?f5 f7(x)=f2?f1?f5 これらの写像が、全単射、単射だが全射でない、全射だが単射でない、 のいずれであるかを判定しなさい。(証明は必要なし) という問題があるのですが、f4,f5,f6,f7の図がうまく描けず、 答えがないためあっているか不安です。 もしよろしければ、教えてほしいです。 お願いします。

  • 大学の数学の写像についての問題です。

    大学の数学の写像についての問題です。 ヒントだけでもおねがいします;; f:X→Y が与えられたとき F:P(Y)→P(X) [Pは冪集合です] をF(B) := f^(-1)(B) [f^(-1)はfの逆写像です] で定める,このとき fが全射 <==> Fが単射であることを示せ (==>) 仮定より∀y∈Y ∃x∈X y=f(X) このとき∀B,B'∈P(Y)をとると fが全射より ∃x,x'∈X ,f({x}) = B ,f({x'}) = B' (?) このとき F(B) = F(B') ∴f^(-1)(B) = f^(-1)(B') ⇒f^(-1)(f({x})) = f^(-1)(f({x'})) ⇒{x} = {x'} ⇒f({x}) = f({x'}) ∴B = B' よってFは単射?■ (<==) さっぱりです。。。

  • 写像について

    問題 A:有限集合 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 全体的に証明できていないと思います。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • 写像の問題なのですが、いまいち理解できません…

    写像の問題なのですが、いまいち理解できません… どなたか解説をお願いします。 1.f1~f5をそれぞれ次の式で定義された実数から実数への写像とする。これらの値域を答えなさい。  さらに全単射、単射、全射、単射でも全射でもどちらでもないのいずれであるか答えなさい。 またグラフも描きなさい。 f1(x)=x+1 f2(x)=x^3 f3(x)=x^3-x f4(x)=a^x (a≠1、a>0) f5(x)=x^2 2.f,g,hは実数から実数の写像でf(x)=x-2,g(x)=3x,h(x)=sinxとする。  このとき、f・g・f と h・g・f と g・h・f を求めなさい。 この2問です。解説お願いします。

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 幾何学の問題がわかりません。

    fを集合Xから集合Yへの写像、gを集合Yから集合Zへの写像とする。つぎを証明せよ。 1、fおよびgが単射ならばfとgの合成gfも単射である。 2、fおよびgが全射ならばfとgの合成gfも全射である。 3、|X|<_|Y|で||<_|Z|ならば|X|<_|Z|である。 この問題が分からないのですが教えて頂けないでしょうか。

  • 合成写像について

    合成写像の証明の問題がわかりません。 f:X→Y g:Y→Z h=g→f=Z として (1)hが全射なら、gもそうであることを示せ。 (2)hが単射なら、fもそうであることを示せ。 分かりにくいかもしれませんが、よろしくおねがいします。

  • 連続写像r:X→Aならrは商写像となる事を示せ

    下記の問題で質問です。 (1) Let p:X→Y be a continuous map. Show that if there is a continuous map f:X→Y such that pf equals the identity map of Y,then p is a quotient map. (2) If A⊂X,a retraction of X onto A is a continuous map r:X→A such that r(a)=a for each a∈A. Show that a retraction is a quotient map. (1) p:X→Yを連続写像とせよ。もし合成写像pfがYの恒等写像になるような連続写像f:Y→Xが存在するならpは商写像である事を示せ。 (2) もしA⊂XならXからAへの上へのretraction(引き込み,左逆写像)は∀a∈Aに対してr(a)=aとなる連続写像r:X→Aならrは商写像となる事を示せ。 (1)については f=p^-1の関係になっていてpもp^-1も連続で全単射と言ってあるのだから ∀p^-1(s)∈T(TはXの位相)⇔s∈S(SはYの位相)が言えるから pは商写像。 で正解でしょうか? (2)については 引き込みの定義はf:X→YでB⊂YでBがf(X)の部分集合でない時の逆像f^-1(B)をfによるBの引き戻しとか言ったりするのだと思います。 rはontoと言っているので全射と分かる。 Aの位相として相対位相T_a:={A∩t∈2^X;t∈T} (但しTはXの位相)が取れる。 そこでr^-1(s)∈T⇔s∈T_aを示す。 s∈T_a⇒r^-1(s)∈Tはrが連続である事から直ちに言える。 r^-1(s)∈T⇒s∈T_aである事は r^-1(s)∈T…(2)を採るとs=r(r^-1(s))(∵rは全射)=r^-1(s) (もしr^-1(s)⊂Aなら) …(3) (∵rの定義) ∈T_a (∵(2),(3)と相対位相の定義) しかしr^-1(s)がAに含まれていない場合はこのsは何ともいえません。 どうすればこの場合もs∈T_aが導けますでしょうか?