• ベストアンサー
  • すぐに回答を!

写像について

写像について (1)(-1,1)を(-∞,∞)に全単射する写像の例を一つ挙げよ。あげた写像が全単射といえる理由も述べよ。 (2)f:R^2→R^2,f(x,y)=(x+y,xy)とするときf(D)を求め図示せよ。 D={(x,y)|x^2+y^2<1,x>0,y≦0} の二問の解答への方向性が見えません。 全射、単射についての定義はわっかていますが・・・。 よろしくお願いいたします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

(1)はグラフを考えましょう。-1<x<1でyが実数全体にわたる関数のグラフを想像(創造)する。tanというヒントもありましたね。 (2)u=x+y,v=xy とおくとき、x,yを解とする二次方程式が実数解を持つ条件を考えれば、基本的に(u,v)の存在する範囲が限定されます。 次に、Dの領域が示す不等式をu,vの不等式に直します。これで大体できるはず。ここまでは高校数学では頻出内容だと思います。 最後がちょっと困らせる点でしょうか。x>0,y<=0という条件をどうu,vと折り合いを付けるか。Dの4分の1の領域ですが、像がどうなるか。対称式というヒントもありました。気をつけて最終的な解にたどり着いてください。

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.2

(1) こういうタイプの写像がほしいときは、tan(x) を適当に変形して使うことが多いかな。お約束というか。 (2)は、単純にDがfによってどう移るかを考えてもいいですし、 逆に、逆関数f^-1 がDに含まれるような点の集合を考えてもよいです。 #実は、高校で散々こういう問題をやってるはずです。「~の軌跡を求めよ」というやつです。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

(1) は例を挙げるだけでよいので、全単射であることを証明しやすいものを考えるだけです。 微分可能性とかまったく不要なので、自由にどうぞ。 (2) はまず xy 平面に D を描いて、その中の点が f でどのように移るのかを色々考えるべきです。 いきなり「基本対称式が云々」とかやっても理解できるはずもありません。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • 写像の単射と全単射

    写像の定義に関して本で 単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的 全射: 任意のyに対して、xに関する方程式f(x)=yの解xが存在 全単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的に存在 という説明がありました。 単射であって全単射でない場合はあるのでしょうか?具体例を教えて いただければと思います。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 写像の問題なのですが…

    写像の問題なのですが… Rで実数全体の集合を表す。 f1,f2,f3,f4,f5,f6,f7をそれぞれ次の式で定義されたRからRへの写像とする。 f1(x)=x-2 f2(x)=x^2 f3(x)=x^3 -4 f4(x)=x^3 -4x f5(x)=e^x f6(x)=f2?f5 f7(x)=f2?f1?f5 これらの写像が、全単射、単射だが全射でない、全射だが単射でない、 のいずれであるかを判定しなさい。(証明は必要なし) という問題があるのですが、f4,f5,f6,f7の図がうまく描けず、 答えがないためあっているか不安です。 もしよろしければ、教えてほしいです。 お願いします。

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像について

    問題 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 単射から全射の証明も、不十分な気がします。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 写像について

    問題 A:有限集合 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 全体的に証明できていないと思います。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 写像の問題をお教え下さい。

    いくら考えても全くわかりません。 お教えいただければ大変嬉しいです。お願いします。 問題 Aをm×n行列とし、行列とベクトルの積で与えられる線形写像A:R^n →R^m:x ↦ Axを考える。 以下の問いに答えよ。 (1) 写像Aが単射であるならば、n ≤ mであることを示せ。 (2) n ≤ mであって、写像Aが単射でない例をあげよ。 (3) 写像Aが単射であるならば、rankA = nであることが必要十分であることを示せ。 (4) 写像Aが全射であるならば、n ≥ mであることを示せ。 (5) n ≥ mであって、写像Aが全射でない例をあげよ。 (6) 写像Aが全射であるならば、rankA = mであることが必要十分であることを示せ。 (7) もしn = mならば、写像Aが全単射であることとAが正則であることが必要十分であることを示せ。

  • 代数の基礎で、写像についてイマイチ理解できなく困っています。

    代数の基礎で、写像についてイマイチ理解できなく困っています。 X={4,7},Y={3,5,8}のときX→Yの写像をすべて挙げ、また挙げた中から全射、単射、全単射を抜き出せ。 という問題があったとします。 教科書、参考書を見てもイマイチ理解できません。 どなたか解り易く解説していただけませんか?