• 締切済み
  • 困ってます

写像の問題です。よろしくお願いします。

(1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数239
  • ありがとう数0

みんなの回答

  • 回答No.2
  • Caper
  • ベストアンサー率33% (81/242)

● (1)   ( g が全射となるということを利用しない証明ですが、よろしいでしょうか。証明としたら、不十分であるか、まちがいであるかもしれません )   集合Y から任意に取り出した要素を y と表わすことにします。g による y の 像g(y) は 集合Z の要素です。仮定より、合成写像g・f は全射ですから、g・f(x) = g(y) を満たす 集合X の 要素x が必ず存在します。   一方、g・f(x) = g(f(x)) ですから、g(f(x)) = g(y) です。よって、仮定より、g は単射ですから、f(x) = y が満たされます。   以上の結果から、Y から任意に取り出した 要素y に対して、f(x) = y を満たす X の 要素x の存在が確かめられました。よって、f は全射です。 ● (2)   ( その理由を説明せよとは、構成した写像が全単射となることを示せということでしょうか … )   写像 f: N∪{0} → Z を次のとおりに定めます。   n が偶数のとき、f(n) = n/2   n が奇数のとき、f(n) = - ((n + 1)/2)   Z から任意に取り出した要素を z と表わすことにします。このとき、f(n) = z を満たす n が必ず存在します。z ≧ 0 である場合は、n = 2z です。z < 0 である場合は、n = - (2z + 1) です。よって、f は全射です。   N∪{0} から任意に取り出した 2つ の要素を n, n' と表わすことにします。このとき、n < n' であるならば、すなわち n' - n > 0 であるならば、f(n) ≠ f(n') となります。 ■ n が偶数、n' が偶数である場合   (n'/2) - (n/2) = (n' - n)/2 > 0 ■ n が偶数、n' が奇数である場合   - ((n' + 1)/2) - (n/2) = (- n' - 1 - n)/2 = - ((n' + n + 1)/2) < 0 ■ n が奇数、n' が偶数である場合   (n'/2) - (- ((n + 1)/2)) = (n' + n + 1)/2 > 0 ■ n が奇数、n' が奇数である場合   - ((n' + 1)/2) - (- ((n + 1)/2)) = (n + 1 - n' - 1)/2 = (n - n')/2 < 0   よって、f は単射です。 ● 以上の私の記述にまちがいがありました場合は、ひらにごめんなさい。   また、私の記述の中に、わかりにくい個所・まちがいではないかと思われる個所がありましたら、「 補足 」機能を利用するなどして、遠慮なくご指摘ください。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

前の質問に回答がついてるよね.

参考URL:
http://okwave.jp/qa/q6890457.html

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 写像について

    問題 A:有限集合 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 全体的に証明できていないと思います。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 自身への写像が全単射となることの証明

    (1) 写像f:A→Aとする。Aが有限集合であるとき、写像fが単射ならばfは全単射である事を示せ。 (2) Aが無限集合であるとき、fは全単射か。そうであれば証明せよ。そうでないなら反例を示せ。 上の問題の(1)は以下のように考えました。 f(A) は A の部分集合。 f(A)≠A と仮定すると、A とその真部分集合との間に全単射が存在したことになる。これは、無限集合の定義であるため、有限集合は全単射である。 このような証明で十分なのでしょうか?また、上のように考えたのでAが無限集合であるときはfは全単射ではないと思うのですが、反例が思いつきません。 わかる人がいれば教えてください。よろしくお願いします。

  • 写像について

    写像について (1)(-1,1)を(-∞,∞)に全単射する写像の例を一つ挙げよ。あげた写像が全単射といえる理由も述べよ。 (2)f:R^2→R^2,f(x,y)=(x+y,xy)とするときf(D)を求め図示せよ。 D={(x,y)|x^2+y^2<1,x>0,y≦0} の二問の解答への方向性が見えません。 全射、単射についての定義はわっかていますが・・・。 よろしくお願いいたします。

  • 余因子行列を求める写像について分かりません

    宜しくお願い致します。 f:C^{n×n}→C^{n×n}をf(A)はAの余因子行列とする写像とする時, fは全射ですか? 全射でないなら像f(C^{n×n})はどんな集合になりますか? H:={A∈C^{n×n};Aは正値エルミート}とし, fをHからHへの写像と制限するとこのfは全単射になりますが, fが全単射となるような制限は正値エルミートだけでしょうか? 他にあればご紹介下さい。

  • 縮小写像について質問です

    フラクタル数学という本を読んでいたら縮小写像が出てきたのですが、縮小写像の性質で逆写像を持つというのがありました。 逆写像が存在するということは写像が全単射であると思ったので、全単射の証明をしようとしたのですが、単射であることは示せても全射であることを証明することができません。 どのようにして証明すればいいのでしょうか? わかる方、ヒントでもいいので教えてください(>_<) よろしくお願いします。

  • 写像について

    問題 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 単射から全射の証明も、不十分な気がします。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 写像の問題なのですが…

    写像の問題なのですが… Rで実数全体の集合を表す。 f1,f2,f3,f4,f5,f6,f7をそれぞれ次の式で定義されたRからRへの写像とする。 f1(x)=x-2 f2(x)=x^2 f3(x)=x^3 -4 f4(x)=x^3 -4x f5(x)=e^x f6(x)=f2?f5 f7(x)=f2?f1?f5 これらの写像が、全単射、単射だが全射でない、全射だが単射でない、 のいずれであるかを判定しなさい。(証明は必要なし) という問題があるのですが、f4,f5,f6,f7の図がうまく描けず、 答えがないためあっているか不安です。 もしよろしければ、教えてほしいです。 お願いします。

  • 写像の問題をお教え下さい。

    いくら考えても全くわかりません。 お教えいただければ大変嬉しいです。お願いします。 問題 Aをm×n行列とし、行列とベクトルの積で与えられる線形写像A:R^n →R^m:x ↦ Axを考える。 以下の問いに答えよ。 (1) 写像Aが単射であるならば、n ≤ mであることを示せ。 (2) n ≤ mであって、写像Aが単射でない例をあげよ。 (3) 写像Aが単射であるならば、rankA = nであることが必要十分であることを示せ。 (4) 写像Aが全射であるならば、n ≥ mであることを示せ。 (5) n ≥ mであって、写像Aが全射でない例をあげよ。 (6) 写像Aが全射であるならば、rankA = mであることが必要十分であることを示せ。 (7) もしn = mならば、写像Aが全単射であることとAが正則であることが必要十分であることを示せ。

  • 大学の数学の写像についての問題です。

    大学の数学の写像についての問題です。 ヒントだけでもおねがいします;; f:X→Y が与えられたとき F:P(Y)→P(X) [Pは冪集合です] をF(B) := f^(-1)(B) [f^(-1)はfの逆写像です] で定める,このとき fが全射 <==> Fが単射であることを示せ (==>) 仮定より∀y∈Y ∃x∈X y=f(X) このとき∀B,B'∈P(Y)をとると fが全射より ∃x,x'∈X ,f({x}) = B ,f({x'}) = B' (?) このとき F(B) = F(B') ∴f^(-1)(B) = f^(-1)(B') ⇒f^(-1)(f({x})) = f^(-1)(f({x'})) ⇒{x} = {x'} ⇒f({x}) = f({x'}) ∴B = B' よってFは単射?■ (<==) さっぱりです。。。

  • 濃度の問についてご教授願います。

    (1)は途中まで解いてみました。(2)(3)はどのように証明してゆけばよいのでしょうか?お願いいたします。                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯〖(Y〗^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 <解答> (1)♯X_1=♯X_2より、fという全単射が存在。♯Y_1=♯Y_2より、gという全単射が存在。(仮定より) また、〖(♯Y₁)〗^(♯X₁)よりhという写像がおける。〖(♯Y₂)〗^(♯X₂)より、iという写像がおける。(示すべきものより)  これより、 Φ:〖(♯Y₁)〗^(♯X₁)→〖(♯Y₂)〗^(♯X₂)  が全単射であることを言えばよいと分るのですが、「全射をどのようにして、定義にもちこむか、単射をどのようにして、定義にもちこむか」が不明です。お願いします。  (※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹と表せますが、何か使えますでしょうか)