• ベストアンサー
  • すぐに回答を!

合成写像について

合成写像の証明の問題がわかりません。 f:X→Y g:Y→Z h=g→f=Z として (1)hが全射なら、gもそうであることを示せ。 (2)hが単射なら、fもそうであることを示せ。 分かりにくいかもしれませんが、よろしくおねがいします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

「 h=g→f=Z 」は、流石にどうかと思う。 「 h = g○f 」とか、「 h(x) = g(f(x)) 」とか、 何かしら書き方がありそうなもんだ。 証明は、「全射」「単射」の定義をそのまま使って、 背理法で示せばよい。 定理の内容≒証明 で、考える部分がほとんど無い。 … とか書いているうちに、「親切な」人が 答えを書いちまうんだろうな。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 幾何学の問題がわかりません。

    fを集合Xから集合Yへの写像、gを集合Yから集合Zへの写像とする。つぎを証明せよ。 1、fおよびgが単射ならばfとgの合成gfも単射である。 2、fおよびgが全射ならばfとgの合成gfも全射である。 3、|X|<_|Y|で||<_|Z|ならば|X|<_|Z|である。 この問題が分からないのですが教えて頂けないでしょうか。

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像について

    問題 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 単射から全射の証明も、不十分な気がします。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 写像について

    問題 A:有限集合 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 全体的に証明できていないと思います。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 数学 集合と写像の問題 回答・解説お願いします。

    数学 集合と写像の 過去問ですが、回答がないので困っています。 よろしくお願いします! 前回質問させていただきましたが、問題に打ち間違えがありましたので再度修正して 質問いたします。 ミスをご指摘いただいた方ありがとうございました。 X={3,4,5} Y={5,6,}とする。 (1) YからXへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからXへの写像で全射であるものを全て求めよ。 (5) (4)で求めた写像 f で合成写像 f2=f○fが恒等写像となるものを全て求めよ。 (6) YからYへの写像で単射であるものを全て求めよ。 (7) (6)で求めた写像 f で合成写像 f3=f○f○fが恒等写像となるものをすべて求めよ。  数学が うまく変換出来ませんでしたので、わかりにくいと思いますが、よろしくお願いいたします。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  •  集合と写像 の問題解説お願いします

    数学の集合と写像について教えてください。 期末試験の過去問なのですが、解説・回答がなくて困っています! 試験直前なので どうぞよろしくお願いします。 X={3,4,5}  Y={5,6,}とする。   (1) XからYへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからYへの写像で全射であるものを全て述べ、その写像 f2 = f. ○ f が恒等写像となるも   のを全て求めよ。 (5) XからYへの写像で単射であるものを全て述べ、その写像 f3 = f ○ f ○ f が恒等写像とな   るものを全て求めよ。 解説も付けていただけるとたすかります。 よろしくお願い致します。

  • 写像について

    この問題がどうしてもわかりません! 基本的な問題かもしれませんが、わかる方いましたら解説お願いします。 (1)f:X→Y、g:Y→Zとします。合成関数fogが全射でgが単射であるときfは全射であることを示してください。 (2)f(x)=e^x+e^-x/2について、逆関数g(x)を考えます。g(x)の定義域と地域をどのように定めるとよいかを説明しなさい。 また、そのときの逆関数を具体的に求めてください。 (2)は相加相乗の考えを使うみたいなんですがよくわかりません… よろしくお願いします!

  • 合成写像(元の定義域)

    集合XからYへの写像をf、集合YからZへの写像をgとする。 合成写像(f・g)(x)を考えるとき、Z⊂Xでなければならない理由がわかりません。 教えてください。 g(x)はYからZへの写像です。fはXからYへの写像ですから、Zはfの定義域(X)に含まれていなくてはならないのですが、Z⊆Xでもよい気がするのですがいかがでしょうか?