• ベストアンサー
  • 困ってます

集合と写像

集合と写像に関する証明で,そうなるということはわかっているのですが,どのように証明すれば良いかわかりません。 問題は 集合Xから集合Yへの写像f:X→Yによる像に関して,以下を示せ。 (1) 任意の部分集合A,B⊂Xに対して,f(A∩B)⊂f(A)∩f(B) (2) fが単射であるならば,任意の部分集合A,B⊂Xに対して,   f(A∩B)=f(A)∩f(B)が成り立つ (3) Xの任意の部分集合A,B⊂Xに対して,f(A∩B)=f(A)∩f(B)が成り立つならば   fは単射である。 どなたか解説お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1134
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • PRFRD
  • ベストアンサー率73% (68/92)

(1) 任意に x ∈ f(A∩B) を取り,x ∈ f(A)∩f(B) を確認すれば十分です. x ∈ f(A∩B) なので,ある c ∈ A ∩ B が存在して x = f(c) c ∈ A∩B なので特に c ∈ A, よって x = f(c) ∈ f(A). 同様に x = f(c) ∈ f(B).よって x ∈ f(A)∩f(B). (2) 両側の包含関係を確認します.⊂は(1)で示しました.⊃についても 任意に x ∈ f(A)∩f(B) を取り,x ∈ f(A∩B) を確認すれば十分です. x ∈ f(A)∩f(B) なので,ある a ∈ A, b ∈ B が存在して x = f(a) = f(b) f が単射なので a = b,よって特に a ∈ A∩B.よって x = f(a) ∈ f(A∩B). (3) 任意の a, b (a ≠ b) について A = {a}, B = {b} とおくと, この等式は f(A∩B) = φ = f(A)∩f(B) = {f(a)}∩{f(b)} となります.これが成り立つためには f(a) ≠ f(b) でなければならず, f は単射となります.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

詳しい説明ありがとうございました!!

関連するQ&A

  • 合成写像に関する問題

    f:A→B g:B→Cとするとき (a)Aの任意の部分集合Pに対して (g・f)(P)=g(f(P)) (b)Cの任意の部分集合Rに対し {(g・f)^(-1)}(P)=f^(-1)(g^(-1)(P)) であることを示せ。(集合位相入門/松坂和夫) について、(b)は (g・f)^(-1)=f^(-1)・g^(-1)と(a)を利用すれば {(g・f)^(-1)}(P) ={f^(-1)・g^(-1)}(P) =f^(-1)(g^(-1)(P)) とできるので、(g・f)^(-1)=f^(-1)・g^(-1)と(a)を 証明すればOKだと思い次のように考えました。 [1] ~(g・f)^(-1)=f^(-1)・g^(-1)の証明~ (g・f)^(-1)とf^(-1)・g^(-1)の始集合と終集合はともに一致。 xをCの任意の元とする (g・f)^(-1)(x) ={a∈A;(g・f)(a)=x} ={a∈A;g(f(a))=x} 一方 (f^(-1)・g^(-1))(x) =f^(-1)(g^(-1)(x)) ={a∈A;f(a)∈g^(-1)(x)} ={a∈A;g(f(a))=x} よって∀x∈Cについて(g・f)^(-1)(x)=(f^(-1)・g^(-1))(x) よって(g・f)^(-1)=f^(-1)・g^(-1) [2] ~(a)の証明~ x∈(g・f)(P) →∃a∈P s.t. (g・f)(a)=x →f(a)∈f(P) →g(f(a))∈g(f(P)) →(g・f)(a)∈g(f(P)) →x∈g(f(P)) よって(g・f)(P)⊂g(f(P)) 逆に x∈g(f(P)) →∃b∈f(P) s.t. g(b)=x →∃a∈A s.t. f(a)=b・・・(※) [質問1] [1]の証明は正しいでしょうか? [質問2] [2]の証明において (※)からがわかりません。 私は、(※)の直後に a∈Pでない、つまりa∈A-Pと仮定して矛盾を導こうとしました。 なぜなら、 a∈P→(g・f)(a)∈(g・f)(P) →g(f(a))=g(b)=x∈(g・f)(P)とできると思ったからです。 でもうまく矛盾が導けませんでした。 しかし、fが単射という特別な場合ならば a∈A-P→f(a)=b∈f(A-P) よりb∈f(A-P)∩f(P) 今、fは単射より b∈f(A-P)∩f(P)=f((A-P)∩P)=f(φ)=φ これはfが写像であることに矛盾。 とできるなと思ったのですが、一般の写像に関してうまく矛盾が導きだせません・・。 なので、私の方針が根本的に誤りなのだと思ったのですが、 どこに誤りがあるのか自分ではわかりませんでした。 どなたか、[質問1][質問2]についてわかる方がいらっしゃいましたら回答よろしくお願いしますm(_ _)m

  • 写像についての証明

    写像に関する問題です。 集合A,Bの部分集合をそれぞれA_1,B_1とする。写像f:A→B に対して次の問いを証明しなさい。 問1 写像fが単射ならば、A_1 = f^(-1)(f(A_1 ))である。 問2 写像fが全射ならば、f(f^(-1)(B_1) ) = B_1である。 どなたかご回答の程よろしくお願いします。

  • 自身への写像が全単射となることの証明

    (1) 写像f:A→Aとする。Aが有限集合であるとき、写像fが単射ならばfは全単射である事を示せ。 (2) Aが無限集合であるとき、fは全単射か。そうであれば証明せよ。そうでないなら反例を示せ。 上の問題の(1)は以下のように考えました。 f(A) は A の部分集合。 f(A)≠A と仮定すると、A とその真部分集合との間に全単射が存在したことになる。これは、無限集合の定義であるため、有限集合は全単射である。 このような証明で十分なのでしょうか?また、上のように考えたのでAが無限集合であるときはfは全単射ではないと思うのですが、反例が思いつきません。 わかる人がいれば教えてください。よろしくお願いします。

  • 後継者写像は後継者対応では?

    識者の皆様、よろしくお願い致します。 『A×Bの部分集合をfとし、AからBへの対応と呼び、対応f:A→Bと書く。』 ですよね。よってA,Bが空集合でも対応は定義できる。 そして、∀A'⊂A,f(A')⊂BをA'のfによる像と呼ぶ。 ですよね。(つまり、像は厳密には常にBの部分集合) そして、 『対応f:A→Bが特に「x∈A⇒f({x}):単集合」は真 となる時、この対応fをAからBへの写像と呼ぶ。』 ペアノの公理で 集合Aはφを含む。 ∀x∈Aならばf(x):=x∪{x}∈Aとなるような写像fを後継者写像と呼ぶ。 となってますが、この時のf(x)はx≠φなら単集合になってませんよね。 だからこのfは写像ではなく、対応となると思うのですが どうしてどの本も後継者対応と呼ばないのでしょうか?

  •  集合と写像 の問題解説お願いします

    数学の集合と写像について教えてください。 期末試験の過去問なのですが、解説・回答がなくて困っています! 試験直前なので どうぞよろしくお願いします。 X={3,4,5}  Y={5,6,}とする。   (1) XからYへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからYへの写像で全射であるものを全て述べ、その写像 f2 = f. ○ f が恒等写像となるも   のを全て求めよ。 (5) XからYへの写像で単射であるものを全て述べ、その写像 f3 = f ○ f ○ f が恒等写像とな   るものを全て求めよ。 解説も付けていただけるとたすかります。 よろしくお願い致します。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 写像について

    問題 A:有限集合 写像f:A→Aとする。写像fが単射ならば全射、また全射ならば単射である事を示せ。 <自解> 写像fが単射ならば a_1,a_2∈A、f(a_1)=f(a_2)⇒a_1=a_2(単射の命題の対偶) 写像fはAからAへの写像より ∀y∈A、∃a∈A、st y=f(a)∈A 故に、写像fが単射ならば全射。 また、 写像fが全射ならば ∀y∈A、∃a∈A、st y=f(a)∈A … ここから単射をどう示したらいいのかわからなくなりました。 全体的に証明できていないと思います。 どう示すべきか教えて頂きたいです。よろしくお願いします。

  • 写像と部分集合の関係

    fを集合Aから集合Bへの写像とし、A1,A2をAの部分集合、B1,B2をBの部分集合とし たとき、 f(A1∩A2)⊂f(A1)∩f(A2) と f^(-1)(f(A1))⊃A1 が成り立つそうですが、なぜ f(A1∩A2)=f(A1)∩f(A2) や f^(-1)(f(A1))=A1 とならないのかがわかりません。 (f^(-1)は逆写像です)

  • 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」を使ってのR:無限の証明は?

    無限集合の定義は 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」 だと思います。 NやQやZは無限集合であることはわかりますが、 R(実数の集合)が無限集合であることは上の定義から導く事は可能なのでしょうか? N⊂Rで 「無限集合を含む集合は無限集合である」 という命題からRは無限集合と導く他ないのでしょうか?

  • 集合の問題お願いします

    Aが有限集合ならば、その真部分集合への単射は存在しない。 これを数学的帰納法で証明せよ。