• ベストアンサー
  • すぐに回答を!

集合、濃度の問題について教えてください。

 (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数361
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • rinkun
  • ベストアンサー率44% (706/1571)

(1)質問の中に書かれた答えでは不足です。 Φを具体的にf,gから構成してください。 (2)定義と(1)から0^(♯X)=♯(Φ^X) ♯(Φ^X)は{f:X→Φ}の濃度です。 Xが空集合でないとき、x∈Xに対してf(x)∈Φですから、そんなfは存在できません。 従って{f:X→Φ}=Φです。 従って、0^(♯X)=♯(Φ^X)=♯(Φ)=0 X=Φのときは、空な関数f:Φ→Φが唯一存在します。 従って、0^(♯Φ)=♯(Φ^Φ)=#({Φ})=1 (3)(2)の最後の部分から0^0=0^(♯Φ)=1

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 濃度の問についてご教授願います。

    (1)は途中まで解いてみました。(2)(3)はどのように証明してゆけばよいのでしょうか?お願いいたします。                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯〖(Y〗^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 <解答> (1)♯X_1=♯X_2より、fという全単射が存在。♯Y_1=♯Y_2より、gという全単射が存在。(仮定より) また、〖(♯Y₁)〗^(♯X₁)よりhという写像がおける。〖(♯Y₂)〗^(♯X₂)より、iという写像がおける。(示すべきものより)  これより、 Φ:〖(♯Y₁)〗^(♯X₁)→〖(♯Y₂)〗^(♯X₂)  が全単射であることを言えばよいと分るのですが、「全射をどのようにして、定義にもちこむか、単射をどのようにして、定義にもちこむか」が不明です。お願いします。  (※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹と表せますが、何か使えますでしょうか)

  • 集合と濃度の問題のやり方を教えてください。

                               問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (1)を、以下のように途中までやりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射であればいい。   そこで、(Y₁)^(X₁)∍h、(Y₂)^(X₂)∍iとして、hとiを用いて、どのようにして全単射を示せばよいか教えてください。お願いします。   ※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹ (2)、(3)についての解き方も併せてお願いいたします。よろしくお願いします。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

その他の回答 (1)

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

既に回答があるので蛇足ではあるんだけど.... (2) や (3) で, なんで全射とか単射とか考えるの? これ, 前のときにも指摘したよね.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 集合の問題

    集合Aから集合Bへの写像f:A→Bが与えられているとする。 Aの2元a,bについてf(a)=f(b)のときa~bと定義すれば、 関係~が同値関係であることを示せ。 さらにfが全射であれば同値類集合A/~と集合Bは対等であることを示せ。 前半はいいのですが後半がいまいちわかりません。 以下のように示したのですがどうでしょうか? X/~={[x]|x∈X},[x]={y∈X|x~y即ちf(x)=f(y)} これよりg:A/~→B:g([x])=f(x)が全単射かつwell-definedであることを示す。 (well-defined) [x]=[x']とする。この時∀y∈Xについて y∈[x]とすればf(y)=f(x)=f(x')となるのでg([x])=g([x']) よってgはwell-defined (全射) ∀y∈Bとするとfが全射であるから∃x∈A s.t. f(x)=y これよりx∈[x]だから∃[x]∈A/~となるのでgも全射となる。 (単射) g([x])=g([y])⇒f(x)=f(y)とするとx∈[x]⇒x∈[y]がいえる。 其の逆も言えるので[x]=[y]

  • 濃度の計算について

    α・α = α^2 を証明せよ 上の問で困っています。 α= |A| となる集合Aをとるとき α・α = |A×A| α^2 = |A^{a, b} |  ({a, b} から Aへの写像全部の集合の濃度) なので、A×A → A^{a, b} の全単射の存在を示せばいいと思うのですが どうつくればいいのか教えてください。 よろしくお願いします。

  • 【大至急】数学の濃度について

    数学の濃度についてお聞きしたいことがあります。 Aの濃度がアレフであることを示せ、という問題があります。 この問題の解法として、 f:A→R g:A→(0,1) もしくは f:N→A いずれかの全単射写像を構成すればよい、 というふうに言われたのですが、その意味がよくわかりません。 濃度がアレフであるということを示すということはどういうことで、上の解法だとどうして示せるのでしょうか? また、全単射写像はどのように構成するのでしょうか? 基本的なことかもしれませんが、よろしくお願いします。

  • 商空間における全射について

    商空間の定義で出てくる、『全射』がよくわかりません。 内田伏一著、集合と位相の96ページに、定義として、 (X,O)を位相空間とし、f:X→Yを集合XからYへの全射とする。集合Yの部分集合族O(f)を O(f)={H∈B(Y)|f^(-1)(H)∈O} によって定義する。 とあるのですが、ここでf^(-1)の逆写像の存在を認めていますよね?しかし、fは全単射ではなく、全射としか仮定がついていないのに、この逆写像は存在することにしてしまっていいのでしょうか?? すごく初歩的なことかもしれませんが、アドバイスお願いします。

  • 集合位相入門 松坂和夫 第1章$5問題11

    (質問の編集の仕方がわからなかったので新しく作成しました) 全射f:A→B、s,s'をfの右逆写像, V(s), V(s')の一方が他方に含まれていればs=s' の証明について、自分で何日か考えているのですがわかりません。教えていただけないでしょうか? (証明したいこと) ∀b∈B, s(b)=s'(b) (前提) 1. ∀b∈Bについて∃a∈A, b=f(a) -------- 全射f:A→Bの条件 2. ∀b∈Bについてf・s(b) = f・s'(b) = b ------ 右逆写像の定義 3. V(s)⊂V(s') よろしくお願いします。 質問の後で回答の方針としては下記を考えつきました。 1.s=s' が成り立っているときはV(s) = V(s')となる 2. V(s)を終集合、Aを定義域とする写像をsに対してs1で考え、V(s)を始集合、Bを値域とする写像をfに対してf1と考えるとf1・s1=Ibでこのときf1、s1はともに全単射となる。 3. 同様にs'1も全単射になるように考えられるがこのときv(s1)⊂v(s'1)であってかつ s1:A→V(s1)が全単射、s'1: A→V(s'1)も全単射であるからV(s1)=V(s2)となりs1=s'1 このときs=s'が言える 2.は大丈夫そうに思いますが、3を示すのはまだちょっとできません。

  • 全射・部分写像の個数の問題

    A={a1,a2,a3,a4}、B={b1,b2,b3}、C={c1,c2,c3} を考えたとき、以下のものは何通りあるかを求めよ。 (1) AからBへの写像 (2) BからAへの単射 (3) BからCへの全単射 (4) AからBへの全射 (5) AからBへの部分写像 という問題の、(4)、(5)がよくわからないのです。 (1)は 3*3*3*3 = 81、 (2)は 4*3*2 = 24、 (3)は 3*2*1 = 6、 (4)は 3*2*1*3 = 18、 (5)は 4*4*4*4 = 256、 と解いて、(1)~(3)は正答と一致したのですが、(4),(5)が違うのです。 ちなみに正答は(4)が36、(5)が空集合を含めて121、となっています。 どこが間違っているのか、ご指摘頂けると幸いでございます。

  • 合成問題の証明教えてください(><)

    背理法を使ってみたんですがよくわかりませんでした。 写像f:A→B,g:B→Cとその合成写像g。fについて示せ。 1 f,gともに全単射であればg。fはまた全単射である。またこのとき(g。f)^-1=f^-1。g^-1である。 2 g。fが全単射ならばgは全射である。もしこのとき、さらにgが単射でもあれば、fは全射である。 3 g。fが単射ならば、fは単射である。もしこのとき、さらにfが全射でもあれば、gは単射である。 わかる方よろしくお願いします。

  • Q.無理数全体の集合Pについて|P|>?0を証明せよ。

    Q.無理数全体の集合Pについて|P|>?0を証明せよ。 レポートを提出したのですが、上記の問いのみ、(1)(下記)を中心に説明不十分とコメントされていました。 レポートは合格したので再提出はないのですが、解答はもらえないため、気になります。 どなたか、修正および補足などをお願いします。 A. Nを自然数全体の集合、Zを整数全体の集合、Qを有理数全体の集合、Rを実数全体の集合とする。 |P|≠アレフゼロを背理法で証明する。 |P|=アレフゼロと仮定すると、アレフゼロからPへの全単射が存在する。 アレフゼロ=|N|だから、NからPへの全単射がある。 A={-n|n∈N}とすると、|A|=|N|=|Q|だから、 A→Qの全単射がある。 Z-{0}=A∪N (A∩N=(空集合)) R=P∪Q (P∩Q=(空集合))だから、|N|=|P|、|A|=|Q|だから、 |Z-{0}|=|R| になる。 |N|=|Z-{0}|であるから、アレフゼロ=|N|=|Z-{0}|=|R|となり、矛盾である。 よって、|P|≠アレフゼロとなる。 また、Pは有限集合であるから|P|<アレフゼロではない。 以上により、|P|>アレフゼロとなる。

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • 濃度のべきについて

    濃度のべきについての証明で、わからないことがあるので、教えてください。 0でない任意の濃度p,m,nについて (p^m)^n=p^(mn) が成り立つ。 [証] F(X,Y) をXからYへの写像全体の集合とする。このとき、 F(A×B,C)とF(B,F(A,C))の濃度が等しいことを示す。 fをF(A×B,C)の任意の元とする。Bの元yを一つ固定して、Aの各元xにf(x,y)を対応させる写像をf_yとすると、f_y∊F(A,C)。次にBの各元yに対して、上のように定まるf_yを対応させる写像をf~とかくと、f~∊F(B,F(A,C))。 これらより、任意の(x,y)∊A×Bに対して、f(x,y)=(f~(y))(x)である。 以上のようなF(A×B,C)の各元fからF(B,F(A,C))の元f~を対応させる対応は全単射であるので、F(A×B,C)~F(B,F(A,C))。 とあるのですが、最後の「全単射である」のをどのように示したらよいのかわかりません。 f_yやf~に関しては理解できますが、「f(x,y)=(f~(y))(x)」この関係式からしっかりと理解してないのが原因だと思います。 証明や具体的なアドバイスをいただけると幸いです。よろしくお願いします。