• ベストアンサー
  • すぐに回答を!

集合、濃度の問題について教えてください。

 (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • rinkun
  • ベストアンサー率44% (706/1571)

(1)質問の中に書かれた答えでは不足です。 Φを具体的にf,gから構成してください。 (2)定義と(1)から0^(♯X)=♯(Φ^X) ♯(Φ^X)は{f:X→Φ}の濃度です。 Xが空集合でないとき、x∈Xに対してf(x)∈Φですから、そんなfは存在できません。 従って{f:X→Φ}=Φです。 従って、0^(♯X)=♯(Φ^X)=♯(Φ)=0 X=Φのときは、空な関数f:Φ→Φが唯一存在します。 従って、0^(♯Φ)=♯(Φ^Φ)=#({Φ})=1 (3)(2)の最後の部分から0^0=0^(♯Φ)=1

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

既に回答があるので蛇足ではあるんだけど.... (2) や (3) で, なんで全射とか単射とか考えるの? これ, 前のときにも指摘したよね.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 濃度の問についてご教授願います。

    (1)は途中まで解いてみました。(2)(3)はどのように証明してゆけばよいのでしょうか?お願いいたします。                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯〖(Y〗^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 <解答> (1)♯X_1=♯X_2より、fという全単射が存在。♯Y_1=♯Y_2より、gという全単射が存在。(仮定より) また、〖(♯Y₁)〗^(♯X₁)よりhという写像がおける。〖(♯Y₂)〗^(♯X₂)より、iという写像がおける。(示すべきものより)  これより、 Φ:〖(♯Y₁)〗^(♯X₁)→〖(♯Y₂)〗^(♯X₂)  が全単射であることを言えばよいと分るのですが、「全射をどのようにして、定義にもちこむか、単射をどのようにして、定義にもちこむか」が不明です。お願いします。  (※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹と表せますが、何か使えますでしょうか)

  • 集合と濃度の問題のやり方を教えてください。

                               問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (1)を、以下のように途中までやりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射であればいい。   そこで、(Y₁)^(X₁)∍h、(Y₂)^(X₂)∍iとして、hとiを用いて、どのようにして全単射を示せばよいか教えてください。お願いします。   ※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹ (2)、(3)についての解き方も併せてお願いいたします。よろしくお願いします。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 集合の問題

    集合Aから集合Bへの写像f:A→Bが与えられているとする。 Aの2元a,bについてf(a)=f(b)のときa~bと定義すれば、 関係~が同値関係であることを示せ。 さらにfが全射であれば同値類集合A/~と集合Bは対等であることを示せ。 前半はいいのですが後半がいまいちわかりません。 以下のように示したのですがどうでしょうか? X/~={[x]|x∈X},[x]={y∈X|x~y即ちf(x)=f(y)} これよりg:A/~→B:g([x])=f(x)が全単射かつwell-definedであることを示す。 (well-defined) [x]=[x']とする。この時∀y∈Xについて y∈[x]とすればf(y)=f(x)=f(x')となるのでg([x])=g([x']) よってgはwell-defined (全射) ∀y∈Bとするとfが全射であるから∃x∈A s.t. f(x)=y これよりx∈[x]だから∃[x]∈A/~となるのでgも全射となる。 (単射) g([x])=g([y])⇒f(x)=f(y)とするとx∈[x]⇒x∈[y]がいえる。 其の逆も言えるので[x]=[y]

  • 幾何学の問題がわかりません。

    fを集合Xから集合Yへの写像、gを集合Yから集合Zへの写像とする。つぎを証明せよ。 1、fおよびgが単射ならばfとgの合成gfも単射である。 2、fおよびgが全射ならばfとgの合成gfも全射である。 3、|X|<_|Y|で||<_|Z|ならば|X|<_|Z|である。 この問題が分からないのですが教えて頂けないでしょうか。

  •  集合と写像 の問題解説お願いします

    数学の集合と写像について教えてください。 期末試験の過去問なのですが、解説・回答がなくて困っています! 試験直前なので どうぞよろしくお願いします。 X={3,4,5}  Y={5,6,}とする。   (1) XからYへの単射を1つ求めよ。 (2) XからYへの全射を1つ求めよ。 (3) (1)(2)で求めた写像の合成写像を求めよ。 (4) XからYへの写像で全射であるものを全て述べ、その写像 f2 = f. ○ f が恒等写像となるも   のを全て求めよ。 (5) XからYへの写像で単射であるものを全て述べ、その写像 f3 = f ○ f ○ f が恒等写像とな   るものを全て求めよ。 解説も付けていただけるとたすかります。 よろしくお願い致します。

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • 濃度のべき乗 (冪乗)についての問題で困ってます。

    以下が教えていただきたい問題です。 集合Xの濃度を#Xで表す.特に,#φ= 0 であり,#{φ} = 1 である 更に,濃度のべき乗(冪乗) (#Y)^(#X) を #(Y^X) と定義する (1) (#Y)^0 を求めよ (2) 0^(#X) を求めよ (3) 0^0 を求めよ (要証明) 濃度のべき乗の定義を調べたところ、濃度α,β(ただしα≧1,β≧1) に対して α= #A, β= #B となる集合 A, B をとり AからBへの写像全部の集合 B^A の濃度を冪β^αとする となっていて濃度が 0 のときの場合について触れている本も無く困ってます なんとなく (1)~(3) の答はどれも 0? ヒントだけでいいのでよろしくお願いします。