• ベストアンサー
  • すぐに回答を!

写像に関する問題で単射、全射、全単射を選ぶ問題についての質問です

大学の問題で、 関数f,g:N→Nを以下のように定義する。 f(n) = 3n, g(n) = [n/3]+1     ※[ ]は床関数を表す fとgの合成gfが満たす性質を選べ。 (A)単射でも全射でもない(B)単射だが全射ではない (C)全射だが単射ではない(D)全単射である という問題なのですが、gfが1となる元が存在しないので(B)の単射だが全射ではないと思うのですが、回答を見たら(D)の全単射でした。なぜ全射になるのか分らないのですが、教えていただけないでしょうか。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数663
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

その通り。 gf は、全射ではないです。 考えられるのは、定義域が自然数でなくて、 実は、整数だった… というオチぐらいかなぁ。 合成 fg の見間違いだとしても、 (A) にしかならないし。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

やはりそうですか! それでは回答の方が間違っていたんでしょうか、、、 ありがとうございました。m(_ _)m

関連するQ&A

  • 写像の単射と全単射

    写像の定義に関して本で 単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的 全射: 任意のyに対して、xに関する方程式f(x)=yの解xが存在 全単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的に存在 という説明がありました。 単射であって全単射でない場合はあるのでしょうか?具体例を教えて いただければと思います。

  • 大学数学 全射と単射

    次の問いが正しければ証明し、間違っていれば凡例をあげよ。 (1)fが単射ならばg○fは単射 (2)gが全射ならばg○fは全射 (3)fが単射、gが全射ならばg○fは全単射 という問題についてなのですが、 例えば(1)はgが全射か単射かによって場合分けをして考えるのでしょうか。 g,fともに全射ならばg○fは全射 g,fともに単射ならばg○fは単射 ということは証明できたのですが、g,fの片方が全射でもう片方が単射の場合の証明方法がわかりません。 また「凡例をあげる」というのは、どのように書けば良いのでしょうか?具体的な関数(y=x^2等)を書けということなのですか? ヒントやアドバイスでも良いので、どなたか回答をお願いいたします。

  • 自身への写像が全単射となることの証明

    (1) 写像f:A→Aとする。Aが有限集合であるとき、写像fが単射ならばfは全単射である事を示せ。 (2) Aが無限集合であるとき、fは全単射か。そうであれば証明せよ。そうでないなら反例を示せ。 上の問題の(1)は以下のように考えました。 f(A) は A の部分集合。 f(A)≠A と仮定すると、A とその真部分集合との間に全単射が存在したことになる。これは、無限集合の定義であるため、有限集合は全単射である。 このような証明で十分なのでしょうか?また、上のように考えたのでAが無限集合であるときはfは全単射ではないと思うのですが、反例が思いつきません。 わかる人がいれば教えてください。よろしくお願いします。

  • 全射と単射の問題

    以下の問題が分からないのですが、どのように解いたらいいでしょうか? XとYが関数で与えられている場合は解けるのですが、このような場合どのように解けばいいのか分かりません。 どなたか教えていただけると嬉しいです _ _ > 集合 X={1, 2, 3, 4}, Y = {1, 2, 3}に対して、次の問いに答えよ。 > (1) XからYへの全射を全て求めよ。 > (2) XからYへの単射は存在しないことを示せ。

  • カントール 写像

    大学一年生です。 学校で、 定理 (カントール?) f:X→Y g:Y→X f,g共に単射ならば、XからYへの全単射が存在する。 とならいました。 (証明はよく理解できませんでした…(--;)) そこで例として、下記を挙げられました。 X=N、Y={2n|n∈N}(=2N) f:N→2N g:2N→Nと定義する。 f,gはともに全射(全単射ではない) このf,gから証明で得られる全単射h:X→Yをはっきりさせる。 z=X-g(Y)=N-2N:奇数 ここからhを求めることってできるのでしょうか…? 何をしたらよいのかさっぱりわかりません…(T_T)

  • 縮小写像について質問です

    フラクタル数学という本を読んでいたら縮小写像が出てきたのですが、縮小写像の性質で逆写像を持つというのがありました。 逆写像が存在するということは写像が全単射であると思ったので、全単射の証明をしようとしたのですが、単射であることは示せても全射であることを証明することができません。 どのようにして証明すればいいのでしょうか? わかる方、ヒントでもいいので教えてください(>_<) よろしくお願いします。

  • "無理数全体の集合から実数全体への全単射が存在する"の証明の説明をお願いします。

    次の問題の解答で分からないところがあるので説明をしてもらいたいです。 問: 無理数全体の集合からRへの全単射が存在することを証明せよ 解: R-Q から R への全単射の存在を示せばよい R-Q は無限集合であるから、可算部分集合 A が存在する ここで Q は可算集合なので、A∪Q は可算集合 よって全単射 f: A→A∪Q が存在するので 関数 g:R-Q →Rを     g(x)= { x (x∈R-A)         〔 f(x) (x∈A) と定義すると g は全単射である ■ 最後のところで、なぜgを上のように定義すると全単射になるのかがわかりません。 よろしくおねがいします。

  • 写像についての問題

    写像についての質問です。 解答できるものだけでよいのでお願いします。 次の集合X,Yについて指定された性質を持つ写像f:X→Yの例を一つ挙げよ。ただし、Rは実数全体の集合、Zは整数全体の集合。 1、X=R、Y={x∈Z│x≧-1}, fは単射でないが、全射である 2、X=R, Y={x∈R| x >0} fは単射であるが、全射ではない。 3、X={x∈R | 1≦x≦3}, Y={x∈R | 2≦x≦5} fは全単射である。

  • 写像について

    写像について (1)(-1,1)を(-∞,∞)に全単射する写像の例を一つ挙げよ。あげた写像が全単射といえる理由も述べよ。 (2)f:R^2→R^2,f(x,y)=(x+y,xy)とするときf(D)を求め図示せよ。 D={(x,y)|x^2+y^2<1,x>0,y≦0} の二問の解答への方向性が見えません。 全射、単射についての定義はわっかていますが・・・。 よろしくお願いいたします。

  • 全単射を具体的に作れますか?

    (0,1)と[1,∞)はともに連続体濃度なので、理論的には全単射が存在するのは明らかですが、具体的に構成することはできますか? (0,1)と(1,∞)などなら簡単な連続関数f(x)=1/xで実現できますが、これらの区間が同相でないため、連続関数での例は作れません。どうしても1点が邪魔になってうまく構成できません。よろしくお願いします。