• ベストアンサー
  • すぐに回答を!

集合と濃度の問題のやり方を教えてください。

                           問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (1)を、以下のように途中までやりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射であればいい。   そこで、(Y₁)^(X₁)∍h、(Y₂)^(X₂)∍iとして、hとiを用いて、どのようにして全単射を示せばよいか教えてください。お願いします。   ※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹ (2)、(3)についての解き方も併せてお願いいたします。よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

前の続きだったら改めて質問を立てずともよいのでは? ああ, 前の質問はちゃんと閉じてね. 「Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射であればいい」というのは表現として乱暴です. より正確に, Y1^X1 から Y2^X2 への全単射 Φ が存在すればいい などと書くようにしましょう. ということで, h∈Y1^X1 から Φ(h)∈Y2^X2 への全単射を実際に作ればいい... んだけど, それは事実上 i=(g)◦h◦f⁻¹ で終わっています. これで実際に「Y1^X1 から Y2^X2 への全単射」になることを示してください. なお, 「全単射 = 全射かつ単射」だから, 「全単射であることを示す」には当然「全射でありかつ単射であること」を示すということになります. もちろんそれぞれは定義に突っ込んで示してください. (2) と (3) は「0」の処理だけの問題なんだけど, (3) の立場がよくわからん. (3) を出さないと (2) に対する「完全な解答」にはならないんだよね.

共感・感謝の気持ちを伝えよう!

質問者からの補足

(2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるで大丈夫でしょうか?

その他の回答 (2)

  • 回答No.3
  • Tacosan
  • ベストアンサー率23% (3656/15482)

え? なんで全射とか単射が出てくるの?

共感・感謝の気持ちを伝えよう!

  • 回答No.2

写像 Φ を ちゃんと 定義してください。 あと ちゃんと 勉強していれば ベルンシュタインの定理 を やっているはずです。それを使えば 全射 か 単射 どちらか一方言えば、済みますが。 少しずつ、やるべきことを整理し、少なくし、 考えていけば 解けます。 

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 集合、濃度の問題について教えてください。

     (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。

  • 濃度の問についてご教授願います。

    (1)は途中まで解いてみました。(2)(3)はどのように証明してゆけばよいのでしょうか?お願いいたします。                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯〖(Y〗^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 <解答> (1)♯X_1=♯X_2より、fという全単射が存在。♯Y_1=♯Y_2より、gという全単射が存在。(仮定より) また、〖(♯Y₁)〗^(♯X₁)よりhという写像がおける。〖(♯Y₂)〗^(♯X₂)より、iという写像がおける。(示すべきものより)  これより、 Φ:〖(♯Y₁)〗^(♯X₁)→〖(♯Y₂)〗^(♯X₂)  が全単射であることを言えばよいと分るのですが、「全射をどのようにして、定義にもちこむか、単射をどのようにして、定義にもちこむか」が不明です。お願いします。  (※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹と表せますが、何か使えますでしょうか)

  • 濃度のべき乗 (冪乗)についての問題で困ってます。

    以下が教えていただきたい問題です。 集合Xの濃度を#Xで表す.特に,#φ= 0 であり,#{φ} = 1 である 更に,濃度のべき乗(冪乗) (#Y)^(#X) を #(Y^X) と定義する (1) (#Y)^0 を求めよ (2) 0^(#X) を求めよ (3) 0^0 を求めよ (要証明) 濃度のべき乗の定義を調べたところ、濃度α,β(ただしα≧1,β≧1) に対して α= #A, β= #B となる集合 A, B をとり AからBへの写像全部の集合 B^A の濃度を冪β^αとする となっていて濃度が 0 のときの場合について触れている本も無く困ってます なんとなく (1)~(3) の答はどれも 0? ヒントだけでいいのでよろしくお願いします。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 集合の問題

    集合Aから集合Bへの写像f:A→Bが与えられているとする。 Aの2元a,bについてf(a)=f(b)のときa~bと定義すれば、 関係~が同値関係であることを示せ。 さらにfが全射であれば同値類集合A/~と集合Bは対等であることを示せ。 前半はいいのですが後半がいまいちわかりません。 以下のように示したのですがどうでしょうか? X/~={[x]|x∈X},[x]={y∈X|x~y即ちf(x)=f(y)} これよりg:A/~→B:g([x])=f(x)が全単射かつwell-definedであることを示す。 (well-defined) [x]=[x']とする。この時∀y∈Xについて y∈[x]とすればf(y)=f(x)=f(x')となるのでg([x])=g([x']) よってgはwell-defined (全射) ∀y∈Bとするとfが全射であるから∃x∈A s.t. f(x)=y これよりx∈[x]だから∃[x]∈A/~となるのでgも全射となる。 (単射) g([x])=g([y])⇒f(x)=f(y)とするとx∈[x]⇒x∈[y]がいえる。 其の逆も言えるので[x]=[y]

  • 集合の問題!

    集合の基礎的な問題です。 わからなくてかなり困っています! 明日テストがあるので、これらの問題をどうしても理解したいです。 自分で解いてみたのですが、以下のことくらいしかわかりませんでした。 たぶん証明を見れば理解できると思うので、至急回答お願いしたいです。 よろしくお願いします!!>< <問題> 問1:FがΩの集合体であるとき、次を示せ。 (1)Ω∈F (2)A,B∈Fならが、A⊂B,A\B,AΔB∈F (3)A1,A2,…,An∈Fならば、∪(i=1,n)Ai,∩(i=1,n)Ai∈F 問2:集合X,Yの濃度が同じである、すなわちX~Yは同値関係であることを示せ。 問3:ベルンシュタインの定理を用いて、次を示せ。 (1){x|0<x≦1}~{x|0≦x≦1} (2){(x,y)|0<x≦1,0<y≦1}~{x|0≦x≦1,0≦y≦1} (3)a<bであるとき、[a,b]~R^2 (4)a<bであるとき、[a,b]~D 但し、D⊂R^2でDは少なくとも1つの内点をもつ。 問4:Fをσ集合体とするとき、以下を示せ。 A1,A2,…,An,…∈F ⇒ ∪(i=1,∞)Ai∈Fとするとき    (i)∩(i=1,∞)Ai∈F    (ii)lim(n→∞)supAn∈F ※問4は記述がわかりづらいですが、A1から始まる無限大の和集合がFに含まれる、(i)はA1から始まる無限大の積集合である、という意味です。(ii)はn→∞がlimの下にくれば正しい記述になります。問1の(3)の記述も同じくです。 <考えたもの> 問2:X~Yということから濃度の定義より、XとYの間には全単射がX→Yが存在する。その上で、反射律・対称律・推移率を示せばよい。 という考えまでは至ったんですが、やってみようとしてもここからの証明の仕方というか記述の仕方がわかりません… 問4:(ii)は、lim(n→∞)supAn∈F=∩(i=1,∞)(∪(i=1,∞)Ai):上極限集合 なので、これがFに含まれることを証明すればいいんだろうとは思うのですが記述の仕方がいまいちわかりません。(i)もどのように記述していけばよいのでしょうか? 問1、問3は証明の見通しが立ちません…。 特にこの2つがわからないです。

  • 集合の問題です

    集合Aから集合Bへの写像fについて、Bの各要素yについてf(x)=y となるAの要素xが必ずある場合に、fをAからBの上への写像とよぶ。 たとえば、A={1,2,3,4,5}、B={a,b}のとき、f(1)=f(2)=f(5)=a , f(3)=f(4)=b とする 写像fはAからBの上への写像であるが、g(1)=g(2)=g(3)=g(5)=bとする写像gはg(x)=aとなるA要素xがないので、AからBの上への写像ではない。 問1 {1,2,3,4,5}から{a,b}への写像は全部で何個ありますか。 問2 {1,2,3,4,5}から{a}の上への写像は全部で何個あるか。また{1,2,3,4,5}から{b}の上への写像は全部で何個あるか。 問3 {1,2,3,4,5}から{a,b}の上への写像は全部で何個あるか 宜しくお願いします

  • 集合の問題なんですが

    解説がないので詳しく説明お願いします 1.f:N→Nodd,f(n)=2n-1の逆写像を求め、fが全単射であることを示せ。 2.写像h:N→Z,h(2h-1)=1-n,h(2n)=nと定める。 このhを利用して、NとZの濃度が等しいことを示せ。 よろしくお願いします。。

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。