• ベストアンサー

濃度を求める問題

次の集合 A = {S⊂R | Sは高々可算 } の濃度を求めよ、という問題の解き方が分からず困っています。 以下、Nを連続濃度(アレフ)とします。 (アレフが入力できないので…すいません。) 写像 f :R→A , x ↦ {x} は単射なので、N≦ |A| である事が分かります。 さらにA⊂2^Rなので、|A|≦2^Nである事も分かります。 この後、どうしたらよいのかが分かりません。 Sが有限の場合なら解けるのですが、可算となると写像をどのように作ればいいかがピンときません。 濃度はNか2^Nになるのだと思いますが… 分かる方がいましたら回答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

R が何だかは書かれていないけれど、 R の濃度がアレフだとは書いてある。 R と実数全体の集合の間に全単射が存在する のだから、その一つを通じて R と実数全体の集合を同一視することができる。 よって、以下では両者を積極的に混同する。笑 A の各元 S は、集合として高々可算なのだから、 自然数で添字づけることができる。 S が有限な場合は末尾に定数列 0 を連結すると、 S は実数の無限列へと対応づけられる。 この対応は単射である。 更に、実数列 x[n] を数列 1/(1+exp(x[n])) へ 対応づけると、S は 0 から 1 までの実数の 無限列へと単射される。 その第 n 項の小数第 k 位を d[n,k] とすると、 S は十進数字を項に持つ二重数列 d へ単射される。 自然数の直積 (n,k) は可算だから、 自然数で添字づけることができる。 (有理数が可算であることの証明を参考に。) この添字によって、自然数→(n,k)→d[n,k] と対応づければ、d は十進数字を項に持つ (一重添字の)数列へ単射される。 その第 n 項を小数第 n 位と見れば、 結局、S は 0 から 1 までの範囲の 一つの実数へと単射されたことになる。 すなわち、|A|≦アレフ。 …なんだかグダグダした証明だか。

tumftmk
質問者

お礼

Rは実数の集合、の意味で使っていました。 太線のRの入力方法がわからなかったので… 混乱させてしまい申し訳ありません。 alice_44さんの回答のおかげでなんとか解くことができました。 丁寧な回答どうもありがとうございました。

その他の回答 (4)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.5

それから、1=0.9999… 問題への言及は勘弁。 有限小数の末尾には、スナオに 0 を並べよう。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.4

そうだね。 0 の替わりに、どんな実数列を連結しても 同じことだし。 S を実数列へ写像したとき、有限列の末尾には 実数でない何か(虚数とか、ビアマグとか) の列を連結しておいて、 正の実数列へ写像するとき、 その「何か」を 0 へ対応させればいい。 …ますます、グダグダが長くなるけど。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

その作り方では {} と {0} が区別できなくなる (どちらも「全て 0 の実数列」になってしまう) ので厳密には「単射」にならないんじゃないかなと難癖をつけてみる>#2. でも, すぐに思い付く筋はそんなところ.

tumftmk
質問者

お礼

回答どうもありがとうございました。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

R ってなに? あと, 「Sは高々可算」についても一応意味を確認させてください.

tumftmk
質問者

補足

Rは実数の集合、という意味でお願いします。 太線のRが入力出来ないためです。 申し訳ありません。 「Sは高々可算」はSの濃度が可算濃度以下、 つまり可算濃度(アレフゼロ)をN0とおけば、|S| ≦ N0 を意味しています。 分かりにくくてすみません。

関連するQ&A

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。  

  • 集合の濃度に関する質問です

    可算無限集合Aの濃度をα_0(アレフ0) R^nの濃度をα_1(アレフ1) (nは自然数) Aの冪集合の濃度を2^α_0(2のアレフ0乗?) ※ヘブライ語のアレフの代わりに、αを使って記述してます。 なので以下αはアレフと読むことにします。 このとき (1)α_0よりα_1のほうが"大きい"こと (2)α_0より2^α_0のほうが"大きい"こと の2つはわかったのですが、α_1と2^α_0ではどちらが大きいのですか? それとも2^α_0=α_1なのでしょうか? 私の記憶では、α_1はα_0の次に"大きい"濃度と定義されていたような気がしますが・・それだとα_0より大きくα_1より小さい濃度は存在してはいけないことになりませんか?(つまり、α_1>2^α_0の可能性はない) 来年度に数学科2年となる身なので、あまり高度な知識は持ち合わせていないです・・。すいません。 どなたか詳しい方がいらっしゃいましたら回答よろしくお願いします。 [補足] (1)については Aが可算(自然数全体の集合Nとの間に1対1かつontoな写像ができる)である一方で、Rは対角線論法により非可算なので、α_0よりα_1のほうが"大きい"としました。(RとR^nの濃度が等しいことの証明は省略します) (2)については Aの冪集合の濃度、つまり元の個数を、Aの各元を含むか含まないかを1と2に対応させることで、小数0.122111222121122・・・・・の総数へと帰着し、あとはこの小数全体に対して対角線論法を用いることで、α_0より2^α_0のほうが"大きい"としました。 「Aの各元を含むか含まないかを1と2に対応させる」とは、 たとえば、A={1,2}であればAの冪集合の濃度(個数)は2^2=4個ですが、これを 0,22⇔Φ(空集合) 0,12⇔{1} 0,21⇔{2} 0,22⇔{1,2} というように小数に対応させるということです。 "大きい"という言葉の定義をしてないのでこの表現が曖昧かもしれませんが、上記のようにして"大きい"かどうかを判断しました。

  • 濃度の厳密な定義はもはや不可能なのですか?

    識者の皆様宜しくお願い致します。 最近,集合位相入門(松坂和夫)を購入し拝読しておりますがこの本のp65にて 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろう』 という記述がありますが,これは正確に解釈すると 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろうが万一ダメだったとしても当方は一切責任持ちません』 と見て取れ,何とも歯切れの悪い定義だなぁと感じました。 結局,濃度(という同値類)はφと有限集合{1,2,…,n}と可算集合N(=:アレフ_0)とアレフ_0の非可算集合Rとアレフ_1の非可算集合2^R,アレフ_3の非可算集合3^R,… と可算個に類別できるのだと思います。 濃度の厳密な定義を知りたいのですがこの "実は集合全体の集ま…ことは当然認めてもよいだろう" の箇所の曖昧さをすっきり解消させるにはどう記述すればいいのでしょうか? 公理的集合論の書籍でさえも濃度の定義の際に「集合全体の集まりを類別する」という表現をさり気なく記述せずに類別によって濃度の定義をしているようです。 濃度を厳密に定義する場合,どういう手順で類別を定義すればいいのでしょうか? また, 歯切れのいい濃度の定義をしてある書籍やサイトがあれば是非ご紹介下さい。

  • 濃度について。

    無限集合の濃度をアレフ(n)と書きます。 (1) アレフ(0)<アレフ(1)<アレフ(2)< ・・・ (2) アレフ(n)<アレフ(k)<アレフ(n+1) kの存在はZFでは肯定も否定もできない。 数学基礎論はおろか対角線論法も1度理解出来たと思った瞬間があっただけで今は図を見ていても頭痛するだけで全く理解できません。 質問です。 ○不等号(<)の使用法は普通の演算3<4とは相違していると思いますがどうなのでしょうか。 ○アレフ(0)は代表として自然数の濃度なのでアレフ(-1)は考慮しなくて良い、集合そのものが存在しないという事で良いでしょうか。 ○有限集合の濃度=アレフ0とやると何か変なので濃度という用語は無限集合だけに適用されるということでしょうか。 みっつも質問がありますが知っている人は知っていて知らない人は覚えたいので宜しく御願い致します。

  • 【大至急】数学の濃度について

    数学の濃度についてお聞きしたいことがあります。 Aの濃度がアレフであることを示せ、という問題があります。 この問題の解法として、 f:A→R g:A→(0,1) もしくは f:N→A いずれかの全単射写像を構成すればよい、 というふうに言われたのですが、その意味がよくわかりません。 濃度がアレフであるということを示すということはどういうことで、上の解法だとどうして示せるのでしょうか? また、全単射写像はどのように構成するのでしょうか? 基本的なことかもしれませんが、よろしくお願いします。

  • 可算濃度2

    Xを自然数全体集合Nの有限部分集合全体とするとき、|X|と可算濃度が同じである証明の仕方を、分かりやすく教えて下さい!

  • 和集合と濃度の関係について

    こんにちは。 集合論の本を読んでいて、わからないところがあります。お力をお貸しください。 わからないところは、ベキ集合のベキを無限にとることによって、無限濃度の可算増加列が得られるが、その可算列の先のさらに大きな濃度の集合Mをとることができるというところです。 自然数の集合Nのベキ集合をB^1(N)とし、そのベキ集合のベキ集合をB^2(N)とすれば、上述の無限濃度の増加列が、「|N|<|B^1(N)|<|B^2(N)|<…<|B^n(N)|<…」として得られます。 このとき、M=⋃(n=1から∞)B^n(N)とおけば、「|B^n(N)|<|M|」が導かれるというのです。 私の疑問は、「n=1から∞」までのB^n(N)の和集合の濃度が、本当に|B^n(N)|を超えるのか?というところです。 といいますのも、アレフにアレフゼロを足してもアレフのままであるように、和集合が単純にB^n(N)より大きくなるとは言えないんじゃないか?と思うからです。 この論理の根拠は(すなわち和集合と濃度の関係についての上述の論証の根拠は)どのようなものなのでしょうか? アドバイスお願いします。

  • 集合の対等や濃度の問題が分かりません。

    二問あります。 1. 任意の集合A、Bに対し、|A-B|=|B-A|ならば、|A|=|B|であることを示せ。 2. 有限集合A、Bに対して、|A|=m |B|=n のとき、AからBへの写像全体の集合の濃度を求めよ。 この二問です。 問1に関しては直感的なイメージも出来、ベン図からも成立しそうなのですが、証明の書き方がわかりません。 問2に関しては問題文が先ず理解できないです。「写像全体の集合の濃度」の意味が良く分かりません。自分でなんとなくのイメージで出した答えは m+n-mn ですが、合っている気がしません。 解説お願いいたします。

  • 集合の濃度

    すみません 以下の2題を教えて頂ければ嬉しいです。 ネットの海を彷徨ってみたのですが よくわからなくて… 1. Aを無限集合、Bを要素の数が2以上の有限集合とするとき、AからBへの写像 全体の集合Map(A, B)の濃度は真に大きいことを示せ。 2. 開区間(-1, 1)の可算個の直積(-1, 1)×(-1, 1)×…は(-1,1)と 濃度が等しい。このことを証明しろ。

  • アレフ0より小さな濃度をもつ無限集合

      アレフ0(可算集合の濃度)より小さな濃度をもつ無限集合はありますか。