• ベストアンサー
  • 暇なときにでも

濃度について。

無限集合の濃度をアレフ(n)と書きます。 (1) アレフ(0)<アレフ(1)<アレフ(2)< ・・・ (2) アレフ(n)<アレフ(k)<アレフ(n+1) kの存在はZFでは肯定も否定もできない。 数学基礎論はおろか対角線論法も1度理解出来たと思った瞬間があっただけで今は図を見ていても頭痛するだけで全く理解できません。 質問です。 ○不等号(<)の使用法は普通の演算3<4とは相違していると思いますがどうなのでしょうか。 ○アレフ(0)は代表として自然数の濃度なのでアレフ(-1)は考慮しなくて良い、集合そのものが存在しないという事で良いでしょうか。 ○有限集合の濃度=アレフ0とやると何か変なので濃度という用語は無限集合だけに適用されるということでしょうか。 みっつも質問がありますが知っている人は知っていて知らない人は覚えたいので宜しく御願い致します。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数91
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

1個ずつ: ・まず不等号の使い方: 有限基数 (ほぼ普通の非負整数のこと) で「a < b」と書けば「a は b より小さい」という意味ですが, 無限の基数においても同じように「a < b」は「a は b より小さい」ことを意味します. もちろん無限基数の場合は単純な大小関係が付かないので「濃度が a である集合 A」と「濃度が b である集合 B」の間に「A から B への単射が存在するが B から A への単射は存在しない」ときに「a < b」の関係が成り立つことになります. ・次: aleph0 は自然数の濃度ですが, 実は「aleph0 より小さな無限基数は存在しない」ことが証明されています. だから「それより小さいものはない」という意味を込めて aleph0 と「0」を付けています. ・最後に「濃度」という用語の使い方ですが, 本質的には有限集合・無限集合を問わず「濃度」ということは可能です. うまくイメージできないので「要素数」とか言うことが多いと思いますが.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

昨日に続き回答ありがとうございます。 (A--->Bの単射が存在するが B--->Aへの単射は存在しない)⇔(a<b)  (aleph0より小さな無限基数は存在しないことが証明されている。)  (有限集合/無限集合を問わず用語濃度OK)(有限集合では要素数)  事実関係を知りたいだけで必要かつ充分な回答で満足致しました。  今後も宜しく御願い致します。スレッドはこれで締めたいと思います。

関連するQ&A

  • 集合の濃度に関する質問です

    可算無限集合Aの濃度をα_0(アレフ0) R^nの濃度をα_1(アレフ1) (nは自然数) Aの冪集合の濃度を2^α_0(2のアレフ0乗?) ※ヘブライ語のアレフの代わりに、αを使って記述してます。 なので以下αはアレフと読むことにします。 このとき (1)α_0よりα_1のほうが"大きい"こと (2)α_0より2^α_0のほうが"大きい"こと の2つはわかったのですが、α_1と2^α_0ではどちらが大きいのですか? それとも2^α_0=α_1なのでしょうか? 私の記憶では、α_1はα_0の次に"大きい"濃度と定義されていたような気がしますが・・それだとα_0より大きくα_1より小さい濃度は存在してはいけないことになりませんか?(つまり、α_1>2^α_0の可能性はない) 来年度に数学科2年となる身なので、あまり高度な知識は持ち合わせていないです・・。すいません。 どなたか詳しい方がいらっしゃいましたら回答よろしくお願いします。 [補足] (1)については Aが可算(自然数全体の集合Nとの間に1対1かつontoな写像ができる)である一方で、Rは対角線論法により非可算なので、α_0よりα_1のほうが"大きい"としました。(RとR^nの濃度が等しいことの証明は省略します) (2)については Aの冪集合の濃度、つまり元の個数を、Aの各元を含むか含まないかを1と2に対応させることで、小数0.122111222121122・・・・・の総数へと帰着し、あとはこの小数全体に対して対角線論法を用いることで、α_0より2^α_0のほうが"大きい"としました。 「Aの各元を含むか含まないかを1と2に対応させる」とは、 たとえば、A={1,2}であればAの冪集合の濃度(個数)は2^2=4個ですが、これを 0,22⇔Φ(空集合) 0,12⇔{1} 0,21⇔{2} 0,22⇔{1,2} というように小数に対応させるということです。 "大きい"という言葉の定義をしてないのでこの表現が曖昧かもしれませんが、上記のようにして"大きい"かどうかを判断しました。

  • 「無理数全体の集合Pについて、|P|>N0(アレフゼロ)を示せ」

    「無理数全体の集合Pについて、|P|>N0(アレフゼロ)を示せ」 という問題がわかりません。解き方を教えて下さい。 教科書には実数の集合の濃度がアレフゼロより大きいことの証明が載っていて、それは無限小数に関する対角線論法を使っていたので、同じ方法で証明しようとしたのですが、その場合、対角線論法により作られた新しい無限小数が無理数に含まれることを示せなかったので挫折しました。(当然実数には含まれるのですが・・・)この方法でできるのでしょうか?それとも全く違った方法を使うのでしょうか?  よろしくお願いします。

  • Cantorの対角線論法を用いる証明

    自然数全体の集合Nと、集合Nから集合{0,1}への写像すべてからなる集合Xの濃度が等しいことを証明するのに、Cantorの対角線論法をどのように用いればよいのですか?

  • 実数の集合が非可算であることの証明

    対角線論法を用いて、実数の集合と自然数の集合が対等でないことを示せば、”実数の集合が非可算であること”は示せているのでしょうか?別の証明方法があるなら教えていただきたいです。 よろしくお願いします。

  • 全ての行列からなる集合の濃度は?

    対称行列は、縦ベクトルと横ベクトルの積で表すことができますから、 n次元ベクトルは、n次元平面と、同じ濃度 したがって、すべて対称行列からなる集合の濃度は、実数の濃度 というのは、わかります。 すべての行列の集合は、対称行列の冪集合と考えてられるのでしょうか? 対角線論法で、確認しようとしたのですが、よくわかりません。 アドバイス、お願いします。

  • 群の位数と濃度

    群の位数と濃度の関係を教えて下さい。 ちなみに自分が考えた結果は 群Gの位数を|G|、濃度をcardGとするとき Gは有限集合⇔|G|=cardG=(Gの元の個数) Gは無限集合⇔|G|=∞⇔cardG≧cardN (ただしNは自然数全体の集合)

  • 和集合と濃度の関係について

    こんにちは。 集合論の本を読んでいて、わからないところがあります。お力をお貸しください。 わからないところは、ベキ集合のベキを無限にとることによって、無限濃度の可算増加列が得られるが、その可算列の先のさらに大きな濃度の集合Mをとることができるというところです。 自然数の集合Nのベキ集合をB^1(N)とし、そのベキ集合のベキ集合をB^2(N)とすれば、上述の無限濃度の増加列が、「|N|<|B^1(N)|<|B^2(N)|<…<|B^n(N)|<…」として得られます。 このとき、M=⋃(n=1から∞)B^n(N)とおけば、「|B^n(N)|<|M|」が導かれるというのです。 私の疑問は、「n=1から∞」までのB^n(N)の和集合の濃度が、本当に|B^n(N)|を超えるのか?というところです。 といいますのも、アレフにアレフゼロを足してもアレフのままであるように、和集合が単純にB^n(N)より大きくなるとは言えないんじゃないか?と思うからです。 この論理の根拠は(すなわち和集合と濃度の関係についての上述の論証の根拠は)どのようなものなのでしょうか? アドバイスお願いします。

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。  

  • 数学基礎論の入門書

    数学基礎論の入門書 数学基礎論の入門書を探しています。 四則の厳密な定義やデデキント・カット、カントール対角線論法などの解説もある広く浅い入門書を知りませんか?高校数学程度の知識でも理解できるものが望ましいのですが。

  • アレフ0より小さな濃度をもつ無限集合

      アレフ0(可算集合の濃度)より小さな濃度をもつ無限集合はありますか。