• ベストアンサー
  • 困ってます

可算無限についてお願いします

集合Xが有限集合の時、 ∪{Xの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…|X|) は、Xのべき集合(2^X)と同じものですよね。 でも集合Xが有限集合ではなく、自然数の集合Nであった場合、 ∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) は可算無限であり、Nのべき集合(2^N)は非可算無限だと聞きましたが、 その違いはいったいなぜ起こるのですか? ※ 集合Y(≠∅ )に対し f:Y→2^Y となる全射が存在しないので、X=Nとすることで2^Nが非可算である事は理解しています。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数273
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

>しかし、その前者が{2,3,4・・・}という要素を本当に持たないのか気になります。 ∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) という定義から明らかでは? A=∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) とすると Aは,Nの無限部分集合を要素として持たない. それらしく書けば,Aの任意の要素Xをとると XはAの定義により,ある自然数kが存在し, {Nの、要素数kの部分集合を全て集めた集合} の要素となる.つまり,Xは要素数kのNの部分集合. 決して,k=0,1,2,...としたって,和集合に 「k=∞」のときが含まれるわけではないのです.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

>決して,k=0,1,2,...としたって,和集合に >「k=∞」のときが含まれるわけではないのです. なるほど、やはりこの定義では含めないのですね~。 ありがとうございました!

関連するQ&A

  • 可算無限集合のベキ乗が可算無限でないことを対角線論法で証明する。

    http://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%B3%E3%83%88%E3%83%BC%E3%83%AB%E3%81%AE%E5%AF%BE%E8%A7%92%E7%B7%9A%E8%AB%96%E6%B3%95 をみているのですが、 わかりません。 証明 背理法による。全単射 ψ: X → 2^X が存在したとしよう。X の部分集合 A を だいたい可算無限の意味がよくわかりません。 お願いします。

  • 可算濃度2

    Xを自然数全体集合Nの有限部分集合全体とするとき、|X|と可算濃度が同じである証明の仕方を、分かりやすく教えて下さい!

  • 可算かどうか

    「XをN(自然数の集合)の有限部分集合全体の集合とするとき、|X|=アレフゼロ(可算濃度)となることを証明せよ」 を教えてください。 自然数Nと一対一対応もしくは、先頭から番号をつけていくことができるというような証明の仕方ではないのかなとは思うのですが、具体的な証明方法が思いつきません、教えてください。 よろしくお願いいたします。

その他の回答 (1)

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

下のやつは「2以上の整数の集合」を要素に持たないのでは?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

{2,3,4・・・}という集合の要素を ∪{Nの、要素数kの部分集合を全て集めた集合} (k=0,1,2…) は持たず、2^Nは持つので、そこの差で前者が可算、後者が非可算となるということですね! しかし、その前者が{2,3,4・・・}という要素を本当に持たないのか気になります。 そこの証明があれば嬉しいのですが・・・

関連するQ&A

  • 位相 可算集合

    この問題の解答と途中式をおしえてください!! できれば全解をお願いします。 何度してもできません!! Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

  • 位相 可算集合

    Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ よくわかりません!! f:N×N→N の全単射とする。 A_n={f(n,m)|m∈N}とすればよい。 と使えばいい思っているんですが、どのようにしたら いいかわかりません!この先の解答を教えてください!! 経過もお願いします!!

  • 無限集合に関することです。

    無限集合に関することです。 自然数全体を可算無限個の互いに交わらない集合A1,A2,A3・・・(どのAkも可算無限集合)の和として表わされることを示したいのですがどうすれば良いですか? 可算無限集合は自然数全体の集合との間に1対1対応の関係がある集合のことなのに、自然数全体を互いに交わらない集合で示せるのでしょうか?

  • 集合の問題お願いします

    Aが有限集合ならば、その真部分集合への単射は存在しない。 これを数学的帰納法で証明せよ。

  • 「集合Xが有限集合⇒∃n∈N such that Map(X,{1,2,…n})∋∃f:全単射」

    有限集合の定義は 「Aが無限集合⇔ A⊃∃B:真部分集合 such that Map(A,B)∋∃f:全単射」 の否定 「Aが有限集合⇔ A⊃∀B:真部分集合 に対しても Map(A,B)∋f:全単射 は存在しない」 ですよね。 これから 「集合Xが有限集合⇒∃n∈N such that Map(X,{1,2,…n})∋∃f:全単射」 がどうやって導き出せるのでしょうか?

  • コインを可算無限回投げたときの表裏

    とくに何かに由来するわけではない, 素朴な疑問です. 1/2の確率でコインを(可算)無限回投げ, 表が出たら1, 裏が出たら0を対応させることにより, 010010111111001100101111101100001111001… のような無限の長さを持つ列Sを, ランダムに作ります. このとき例えば, 0と1からなる有限列「11101100」がSのどこかの位置に現れる確率は, 明らかに1ですね. (上の例だと実際 0100101111110011001011 *1110110* 0001111001… と途中で現れています) では, 次に0と1からなる有限列全体の集合をΣとおきます. このとき, 「Σに含まれるどんな有限列に対しても, それがSのある位置に現れる」という確率というのはいくらになるのでしょう?

  • 可算無限集合と非可算無限集合の違いが分かりません。

    例えば、こういう問題のときそれぞれ可算無限集合と非可算無限集合のうちどっちですか? (1)0≦x≦1を満たす実数x (2)任意の自然数N (3)任意の実数R 回答よろしくお願いします。

  • 可能無限と実無限

    可能無限と実無限って何ですか? このカテゴリで合ってますか? 自然数全体という集合が存在すること関係ありますか? 集合の濃度と関係ありますか(可算無限の友達ですか)? 実数直線の両端にくっついてる「±∞」と関係ありますか? 無限大超実数(NSA)と関係ありますか? 数学科の大学生に教える感じで、お願いします。

  • 組み合わせの全体と部分集合の全体は等しいか?

    「組み合わせの全体」と「有限集合の部分集合の全体」は等しいと感じますが,この事に関する「証明」または「定理」は存在するでしょうか? ご存じの方,教えて下さい. 以下が質問の内容の詳細です. 正の整数を,1, 2, 3, ....., n-1, n とします.この n個の正の整数の組み合せ(重複は許さない)の総数 N は, N=Σ[r=1→n] n!/(r!(n-r)!)= =n!/(1!(n-1)!) + n!/(2!(n-2)!) + n!/(3!(n-3)!) +・・・+ n!/((n-1)!(n-(n-1))!) + n!/(n!(n-n)!) =(2^n)-1 ですから, N=(2^n)-1 です. そして,組み合せの全体そのものは, (1),(2),・・・,(n-1),(n), (1,2),(1,3),・・・, (2,3),(2,4),・・・, (1,2,3),(1,2,4),・・・, (2,3,4),(2,3,5),・・・, (1,2,3,4),(1,2,3,5),・・・, (2,3,4,5),(2,3,4,6),・・・, ・・・・・, (1,2,3,4,・・・,n-1,n) となります. 次に,有限集合を S = {1, 2, 3, ....., n-1, n} とします. n は正の整数です.S の部分集合(真部分集合でない,かつ,空集合は除く)の全体は, {1},{2},・・・,{n-1},{n}, {1,2},{1,3},・・・, {2,3},{2,4},・・・, {1,2,3},{1,2,4},・・・, {2,3,4},{2,3,5},・・・, {1,2,3,4},{1,2,3,5},・・・, {2,3,4,5},{2,3,4,6},・・・, ・・・・・, {1,2,3,4,・・・,n-1,n} となります. これらの S の部分集合の全体は,集合の元の構成が組み合せの全体と等しいですか? 分かる方,教えて下さい.お願いします.

専門家に質問してみよう