• ベストアンサー
  • 暇なときにでも

集合は有限集合と無限集合だけですか?

有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数616
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • rinkun
  • ベストアンサー率44% (706/1571)

質問1: 通常の「無限集合」の定義だと、「寿限無集合(仮名)」も無限集合になってしまうので、存在として矛盾し、従って「寿限無集合(仮名)」は存在できません。 一方で空集合から順により大きな基数の集合を作っていくという観点では、ZFC公理系の構成法では到達できない「到達不能基数」の概念があります。 例えば「任意の基数cについてc<κならばP(c)<κが成り立つ基数κ」を考えましょう。ここでP(c)はcのべき集合です。この条件を満たす基数κは、より小さな基数から構成することはできません。 このような基数の存在はZFC公理系と矛盾しませんが、逆にZFC公理系の上でその存在を証明することもできません。それは到達不能基数が存在すれば、それより小さな集合の全体はZFC公理系のモデルになるためZFC公理系が無矛盾であることが証明できてしまうからです。 不完全性定理によりZFC公理系の無矛盾性は証明できないですから、到達不能基数の存在も証明できません。 質問2: ZFC公理系に到達不能基数の存在公理を追加すればZFCの拡張ができますが、通常の数学ではこんな強力な公理は必要ないので、ほぼ基礎論の人しか使わないでしょう。 質問3: 無限以外ではありませんが、無限の階層化や到達不能基数は基礎論では使われます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答有難うございます。 ZFC公理系では「全ての集合は有限集合か無限集合のいずれかである」と言ってよいわけですね。 無限の階層化、到達不能基数というキーワードを教わりましたが、「無限の階層化」をキーワードに検索すると、”Unlimited Stratification"の意味で検索されますが、”Stratification of infinity"の意味では検索されません。なにか別の専門用語があるのでしょうか。それともマイナー過ぎてヒットないのでしょうか。

関連するQ&A

  • 有限集合の定義って? {1,2,…}は有限集合?

    無限の公理は ∃A;[(φ∈A)∧((¬(x∈A))∨(x∪{x}∈A))] というものなので 集合Aが無限集合の定義は「(φ∈A)∧(¬(x∈A)∨(x∪{x}∈A)」ですよね。 すると、有限集合の定義は無限集合ではないもの 即ち Aが有限集合であるとは「¬[(φ∈A)∧(¬(x∈A)∨(x∪{x}∈A)]」 と言う風に書けると思います。 ¬[(φ∈A)∧(¬(x∈A)∨(x∪{x}∈A)]は ¬(φ∈A) ∨ ¬(¬(x∈A)∨(x∪{x}∈A))と書け、 ¬(φ∈A) ∨ ((x∈A)∧¬(x∪{x}∈A)) したがって、 (Aはφを含まない) ∨ (x∈A)∧(Aはx∪{x}を含まない) となってしまい、自然数全体の集合から0を差し引いたN\{0}という集合 {φ∪{φ},(φ∪{φ})∪{φ∪{φ}},…}は有限集合となってしまいますよね。 (∵この集合はφを含んでいないので) でもこれを有限集合とは到底思えませんよね。 一体何処から間違っているのでしょうか?

  • 有限集合を無限に直積した集合の濃度は?

    有限集合Aがあったとして、A×A×A×・・・と加算無限回直積させたら濃度はどうなりますか? 直感では加算無限個になると思うのですが、証明する方法が思いつかないので教えてください もし言葉や記号に間違いがあったら教えてください、補足します

  • 有限列全体の集合を公理から構成する方法

    集合Xが与えられた時,Xの元の有限列全体を要素に持つ集合は,公理的集合論からはどのようにして,その存在が示されますでしょうか? {X^n | n∈N}という集合の存在が言えるならば,和集合の公理から, __∪{X^n | n∈N} によって,Xの元の有限列全体のなす集合Z という物の存在が主張できるような気はしましたが,自身は全くありません。 また,昔,「ACを使わなければ,Zの存在は主張できない」という文章も見た事があるような記憶がぼんやりとあります。 何か役に立つサイト,テキストなどあれば御教示いただきたく思います。宜しくお願いします。

その他の回答 (2)

  • 回答No.3
  • rinkun
  • ベストアンサー率44% (706/1571)

ANo.2へのお礼への回答 > ZFC公理系では「全ての集合は有限集合か無限集合のいずれかである」と言ってよいわけですね。 ZFC自体にはこうした定義は含まれませんが、通常は有限集合と無限集合は相補関係で定義されるので、必然的にどちらかになります。 具体的には、ある自然数と対等なのが有限集合で、そうでないのが無限集合です。あるいは自身の真部分集合への単射が存在するのが無限集合で、存在しないのが有限集合です。 > 無限の階層化、到達不能基数というキーワードを教わりましたが 「無限の階層化」はANo.2の説明をまとめてあらわしただけの言葉であり一般的なキーワードではありません。 キーワード検索するなら「到達不能基数」の方で探してください。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

再度のご説明有難うございます。

  • 回答No.1

ということで、また門外漢が失礼します。 公理系集合論 までやっていない代数屋(o`・ω・)ゞデシ!! また皆さんよろしくどうぞ m(_ _)m ∞+∞=2×∞ ですか? これで話がついているんだと思うのだけど。 どうでしょう? (=^. .^=) m(_ _)m (=^. .^=)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

偶数の数+奇数の数=整数の数 かつ 偶数の数≠整数の数-奇数の数 交換法則が成り立たん世界やで。

関連するQ&A

  • 述語論理におけるコンパクト性 いくらでも大きい有限

     述語論理のコンパクト性より  「論理式の集合△は、いくらでも大きな有限集合を議論領域とするモデルによって充足可能ならば、△は無限集合を議論領域とするモデルによって充足可能である」 というものが、出てきますが、 そもそも、このいくらでも大きい有限集合と無限集合とは異なるものなのでしょうか(同じ意味ならば上の定理は何もいってないことになりますよね)。無限集合の定義というのがZFCの無限公理からのものなら帰納的に定義されているものなので、それならいくらでも大きい有限(k→k+1をいえる)というのと同じなのではないですかね・・・。  また、上の証明では Anを「すくなくともn個のものがある」 たとえばA2は「∃x1∃x2(x1≠x2)」などとして △∪{A1,A2,A3,A4,A5・・・An・・・} を考えるわけですが・・・の部分はこのままでは無限の論理式を含んだ形になっています、がこれも無限の論理式をそのまま考えることはできないので「無限個の論理式とはどういう意味か」に相当する(おそらくメタ的な)定義があると思うのですが、それはそういったものでしょうか。もしくはそういう定義がないとすると、どう考えればいいのでしょうか。  質問としては、集合のレベルでの無限といくらでも大きい有限とは異なるものなのかということと、論理式の数においてその数が無限とはどういうことを指しているのかということです。  コンパクト性などはモデルと論理式の両方にまたがるメタ的定理なので、その内容に現れる無限という言葉は(「集合における無限」、「論理式の数における無限」として)それぞれの体系での意味としてとらえる必要があるにも関わらず日常語の意味(限りがないというラフな使い方)にひっぱられていることが私の混乱の原因としてあると思うのですが、この分野に明るい方いらっしゃいましたらご回答ください。よろしくお願いします。

  • "領域"と"素朴集合論の集合"は同じ概念?

    最近,公理的集合論を勉強しております。 高校の時から今まで何気なく使用していた集合では矛盾が生じてしまうので公理的集合論の集合が考え出されたのですね。 ところで "領域"と"素朴集合論の集合"は同じ概念と解釈していいのでしょうか?

  • 無限集合の連続体濃度のよりも大きな濃度?

    http://ufcpp.net/study/set/cardinality.html#carginality 上記のサイトを眺めておりましたところ、下記の記述に出会いました。 ===引用=== 余談になりますが、 この記号 ‭א は、 ヘブライ文字の1文字目で、ギリシャ文字のα、ローマンアルファベットの a の元になった文字です。 無限基数の中で小さいものから順に、 ‭א0 , ‭א1 , ‭א2 , ・・・ と表します。 昔は、 無限基数を小さいものから順に、 ヘブライ文字の第 n 文字目で表していました (aleph, beth, gimel, daleth, ・・・)が、 読めないし、写植の上でもなかなか表示できないので、 アレフの右下に添字を付ける今の表記法になりました。 ===引用終わり=== 恥ずかしながら、無限集合の濃度の事を聞いて以来、無限集合の濃度は下限が ‭א0で上限がא1なのかと勝手に思っておりました。 ところが、上述のように、 ‭א0 , ‭א1 , ‭א2 , ・・・ ということでありますと、俄然 ‭ ‭‭א2の濃度を持つ無限集合に興味が湧いてまいりました。 連続体濃度よりも濃度が大きい無限集合とはどのような集合でしょうか? 数学の素人なものですから、直観的に理解できそうな実例を一個・二個、お示し頂けるとありがたいです。

  • 部分空間 有限無限集合 基底

    集合 U ⊂R2min を U ={(x y)|x > y,x ∈Rmin, y ∈R}∪{(ε ε)} で定義する. そのとき次の問いに答えよ. (1) U がR^2 min の部分空間であることを示せ. (2) U が有限集合からなる基底を持たないことを示せ. (3) U は無限集合を許しても基底を持たないことを示せ.

  • 全ての集合の定義を元とする無限集合は定義可能?

    年末以来ずっとべき集合というものを考えていたのですが、このべき集合というものがある限り、すべての集合を元とする無限集合を定義できない事が判りました。 すなわち、 今、考えられる全ての集合を元とする無限集合Xが定義可能と仮定する。 すると、その無限集合からべき集合Power(X)が必ず定義可能である。 Power(X)はXの元になっていないために、最初の仮定が間違っていることが証明される。 この事実が意味する事は、 「集合Xからべき集合P(X)を造ることが出来る」-----(A) 「集合を元とした無限集合Xを定義することができる」---(B) 暗黙の前提としている公理系では(A)と(B)が両立しないという事になります。 この袋小路はどう考えればよいのでしょうか? (A)が常に真ではない? (B)が常に真ではない? (A)が偽の場合のみ(B)が真である? (A)が真の場合は(B)が偽である? 暗黙の公理系になにか公理を見落としている(不足している)? 考えるヒントを頂ければ助かります。

  • 「集合Xが有限集合⇒∃n∈N such that Map(X,{1,2,…n})∋∃f:全単射」

    有限集合の定義は 「Aが無限集合⇔ A⊃∃B:真部分集合 such that Map(A,B)∋∃f:全単射」 の否定 「Aが有限集合⇔ A⊃∀B:真部分集合 に対しても Map(A,B)∋f:全単射 は存在しない」 ですよね。 これから 「集合Xが有限集合⇒∃n∈N such that Map(X,{1,2,…n})∋∃f:全単射」 がどうやって導き出せるのでしょうか?

  • 集合論についての質問です

    集合論には大きく分けて素朴集合論と公理的集合論があることを知りました。 今大学生なのですが、工学部なのでそこまで詳しい解説は4年生になっても多分しません。 なので、数理学科が学ぶようなとても厳密なお話にはついていけないと思いますので、簡単に教えていただければと思います。 公理的集合論での「公理」とは、「これこれこういう集まりじゃなきゃいけませんよ」というような、集合とはどのようなものかを定義するものということでいいのでしょうか? いいかえるならば、素朴集合論において、パラドックスが発生したときに用いていた集合を排除するための規則ということでいいのでしょうか? 公理的集合論とは、素朴集合論においてパラドックスが発生してしまうような集合をとりのぞくいろいろな規則を導入して、パラドックスが発生しないようにした集合論ということですね。 また、高校や大学で集合を扱う時は、集合の定義で「ある条件に当てはまるか当てはまらないかが明確に決まるものの集まりとする」として、たとえば、「背の大きなクラスメートの集まりは集合とはしない」と説明されましたが、この時の背の大きなクラスメートの集まりが集合としないのは公理的集合論の理論を用いているのでしょうか? それともそれ以前の大前提のことをただ単に明示しているだけで、素朴、公理的、を語る以前のことという捉え方でいいのでしょうか? 全体的に分かりにくい文章で申し訳ありません。 よろしければ回答お願いいたします。

  • 集合の濃度

    すみません 以下の2題を教えて頂ければ嬉しいです。 ネットの海を彷徨ってみたのですが よくわからなくて… 1. Aを無限集合、Bを要素の数が2以上の有限集合とするとき、AからBへの写像 全体の集合Map(A, B)の濃度は真に大きいことを示せ。 2. 開区間(-1, 1)の可算個の直積(-1, 1)×(-1, 1)×…は(-1,1)と 濃度が等しい。このことを証明しろ。

  • 集合の円の図の中に書く要素について

    集合の要素を書くとき、A={1、2、3、…}というように式のように書くか、円の中に要素を書くか、という二通りがあります。 例えばB={1、2、3、4、5}などといった有限集合かつ要素が少ない集合なら、円の中に全て書き込めばOKです。 しかし、有限集合だが要素が多い集合、または、無限集合なら、円の中に全て書き込むのは普通しませんよね。 だからそれをx一文字で表したりするのですが…。 または、参考書には、Aという集合の名前がついた円があり、Aにかっこづけで、A(3で割り切れる数)などというように書いてあり、円には何も書かれていません。 そのような記法もあるみたいですね。 ここで質問です。 有限集合だが要素が多い集合や、無限集合では普通は円に全ての要素を書き込みません。 しかし、要素の中から数個選び出して円の中に書き出す事は可能でしょうか? (一個だったり、二個だったり、三個だったり、…) 円の中に要素を書き出すなら、やはり全て書かないといけないのでしょうか?

  • σ-集合体について

    σ-集合体について (1)Ωは無限集合であるとする。 A={A⊂Ω:AまたはA^cが有限集合か空集合} この集合族Aは集合体であるがσ-集合体ではないことを示せ。 (2)Ωが有限集合のとき、その部分集合族Aが集合体ならばσ-集合体せあることを示せ。 (3)A,FはΩの部分集合族でA⊂Fとする。また、 A'={A⊂Ω:A^c?A} とする。Fが集合体であればA'⊂Fであることを示せ。 (4) (3)によってA'⊂σ(A)が示されるが、さらにσ(A')=σ(A)を示せ。 この問題が分かりません。 定義や定理は理解できるのですが、活用できません。 解答お願いします。