• ベストアンサー
  • すぐに回答を!

集合の濃度に関する質問です

可算無限集合Aの濃度をα_0(アレフ0) R^nの濃度をα_1(アレフ1) (nは自然数) Aの冪集合の濃度を2^α_0(2のアレフ0乗?) ※ヘブライ語のアレフの代わりに、αを使って記述してます。 なので以下αはアレフと読むことにします。 このとき (1)α_0よりα_1のほうが"大きい"こと (2)α_0より2^α_0のほうが"大きい"こと の2つはわかったのですが、α_1と2^α_0ではどちらが大きいのですか? それとも2^α_0=α_1なのでしょうか? 私の記憶では、α_1はα_0の次に"大きい"濃度と定義されていたような気がしますが・・それだとα_0より大きくα_1より小さい濃度は存在してはいけないことになりませんか?(つまり、α_1>2^α_0の可能性はない) 来年度に数学科2年となる身なので、あまり高度な知識は持ち合わせていないです・・。すいません。 どなたか詳しい方がいらっしゃいましたら回答よろしくお願いします。 [補足] (1)については Aが可算(自然数全体の集合Nとの間に1対1かつontoな写像ができる)である一方で、Rは対角線論法により非可算なので、α_0よりα_1のほうが"大きい"としました。(RとR^nの濃度が等しいことの証明は省略します) (2)については Aの冪集合の濃度、つまり元の個数を、Aの各元を含むか含まないかを1と2に対応させることで、小数0.122111222121122・・・・・の総数へと帰着し、あとはこの小数全体に対して対角線論法を用いることで、α_0より2^α_0のほうが"大きい"としました。 「Aの各元を含むか含まないかを1と2に対応させる」とは、 たとえば、A={1,2}であればAの冪集合の濃度(個数)は2^2=4個ですが、これを 0,22⇔Φ(空集合) 0,12⇔{1} 0,21⇔{2} 0,22⇔{1,2} というように小数に対応させるということです。 "大きい"という言葉の定義をしてないのでこの表現が曖昧かもしれませんが、上記のようにして"大きい"かどうかを判断しました。

noname#87374
noname#87374

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数156
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

定義が違っています。 正しくは アレフ0=可算無限の濃度 アレフ=実数全体の濃度=2^アレフ0>アレフ0 アレフ1=最小の非可算濃度 「アレフ1=アレフ」を連続体仮説と言います。 否定も肯定も証明できません(どちらもモデルを作ることができます)。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お二方とも回答ありがとうございます! 回答にあった、連続体仮説という言葉を今までいろいろ調べてみたのですが、残念ながら私には理解できないところがとても多くありました。 でも、公理に近いもの(証明不可能)なのかな?ぐらいの感覚は持ちました。(←この発言自体間違ってるのかも知れませんが、私にはそれもよくわかりません・・・。) まだまだ知識がたりないようです。もう少し勉強してからまた考え直してみようと思います。 わざわざ回答していただきありがとうございました。

関連するQ&A

  • 全ての行列からなる集合の濃度は?

    対称行列は、縦ベクトルと横ベクトルの積で表すことができますから、 n次元ベクトルは、n次元平面と、同じ濃度 したがって、すべて対称行列からなる集合の濃度は、実数の濃度 というのは、わかります。 すべての行列の集合は、対称行列の冪集合と考えてられるのでしょうか? 対角線論法で、確認しようとしたのですが、よくわかりません。 アドバイス、お願いします。

  • 「無理数全体の集合Pについて、|P|>N0(アレフゼロ)を示せ」

    「無理数全体の集合Pについて、|P|>N0(アレフゼロ)を示せ」 という問題がわかりません。解き方を教えて下さい。 教科書には実数の集合の濃度がアレフゼロより大きいことの証明が載っていて、それは無限小数に関する対角線論法を使っていたので、同じ方法で証明しようとしたのですが、その場合、対角線論法により作られた新しい無限小数が無理数に含まれることを示せなかったので挫折しました。(当然実数には含まれるのですが・・・)この方法でできるのでしょうか?それとも全く違った方法を使うのでしょうか?  よろしくお願いします。

  • 集合の問題なんですが

    集合Xの元の個数がn(nは整数かつn≧0)のとき集合Xの冪集合の元の個数を求めるという問題なんですがどのように求めたらいいんでしょうか?

その他の回答 (2)

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

おっと, CH を前提にする必要はなかった>#1.

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

「R^n の濃度 aleph が aleph1 であるかどうか」は「連続体仮説」(Continuum Hypothesis, CH) と呼ばれ, ZFC 公理系のもとで決定不能じゃありませんでしたっけ? それを大前提として, aleph1 は定義から aleph0 の次の濃度であり, また R^n の濃度は 2^aleph0 であることが分かってますから, 「R^n の濃度を aleph1」としたら自動的に aleph1 = 2^aleph0 です. もちろん, いわれる通りいかなる仮定のもとでも aleph1 > 2^aleph0 はあり得ません.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 濃度について。

    無限集合の濃度をアレフ(n)と書きます。 (1) アレフ(0)<アレフ(1)<アレフ(2)< ・・・ (2) アレフ(n)<アレフ(k)<アレフ(n+1) kの存在はZFでは肯定も否定もできない。 数学基礎論はおろか対角線論法も1度理解出来たと思った瞬間があっただけで今は図を見ていても頭痛するだけで全く理解できません。 質問です。 ○不等号(<)の使用法は普通の演算3<4とは相違していると思いますがどうなのでしょうか。 ○アレフ(0)は代表として自然数の濃度なのでアレフ(-1)は考慮しなくて良い、集合そのものが存在しないという事で良いでしょうか。 ○有限集合の濃度=アレフ0とやると何か変なので濃度という用語は無限集合だけに適用されるということでしょうか。 みっつも質問がありますが知っている人は知っていて知らない人は覚えたいので宜しく御願い致します。

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。  

  • 集合論 直積集合の定義式

    直積集合の定義を,冪(ベキ)集合を用いているものがあります. 直積集合自体の意味は,たとえば,X×Yで,デカルト平面を想像すればわかります. その定義式は, 集合X,Yについて { (x,y)∈ B(B(U{x,y})):x∈X,y∈Y } ただし,B(・)は,冪集合を表す記号. また,U{・}は,和集合を作る記号で,A U B U C U・・と同じです. 冪集合でまた冪集合を作るような記号らへんのところも特に分かりづらいです.

  • 実数の集合が非可算であることの証明

    対角線論法を用いて、実数の集合と自然数の集合が対等でないことを示せば、”実数の集合が非可算であること”は示せているのでしょうか?別の証明方法があるなら教えていただきたいです。 よろしくお願いします。

  • 和集合と濃度の関係について

    こんにちは。 集合論の本を読んでいて、わからないところがあります。お力をお貸しください。 わからないところは、ベキ集合のベキを無限にとることによって、無限濃度の可算増加列が得られるが、その可算列の先のさらに大きな濃度の集合Mをとることができるというところです。 自然数の集合Nのベキ集合をB^1(N)とし、そのベキ集合のベキ集合をB^2(N)とすれば、上述の無限濃度の増加列が、「|N|<|B^1(N)|<|B^2(N)|<…<|B^n(N)|<…」として得られます。 このとき、M=⋃(n=1から∞)B^n(N)とおけば、「|B^n(N)|<|M|」が導かれるというのです。 私の疑問は、「n=1から∞」までのB^n(N)の和集合の濃度が、本当に|B^n(N)|を超えるのか?というところです。 といいますのも、アレフにアレフゼロを足してもアレフのままであるように、和集合が単純にB^n(N)より大きくなるとは言えないんじゃないか?と思うからです。 この論理の根拠は(すなわち和集合と濃度の関係についての上述の論証の根拠は)どのようなものなのでしょうか? アドバイスお願いします。

  • アレフ0より小さな濃度をもつ無限集合

      アレフ0(可算集合の濃度)より小さな濃度をもつ無限集合はありますか。  

  • 集合 濃度の問題

    集合・位相の初心者です。 以下の問題の意味がよくわかりません。 問.Xを小数点以下の各桁の値が2か3か4であるような   小数全体の集合とするとき、|X|>|N|を証明せよ。 質問(1)小数点以下の各桁の値が2か3か4であるような小数    とは、例えばどんな小数ですか。   (2)証明の仕方は、1)|X|≧|N|が成立する。2)|X|≠|N|    である。を示せばよいですか。    また、対角線論法を使いますか。 レベルの低い質問かもしれませんが、いろいろ教えていただけたら 助かります。お願いします。

  • 濃度の厳密な定義はもはや不可能なのですか?

    識者の皆様宜しくお願い致します。 最近,集合位相入門(松坂和夫)を購入し拝読しておりますがこの本のp65にて 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろう』 という記述がありますが,これは正確に解釈すると 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろうが万一ダメだったとしても当方は一切責任持ちません』 と見て取れ,何とも歯切れの悪い定義だなぁと感じました。 結局,濃度(という同値類)はφと有限集合{1,2,…,n}と可算集合N(=:アレフ_0)とアレフ_0の非可算集合Rとアレフ_1の非可算集合2^R,アレフ_3の非可算集合3^R,… と可算個に類別できるのだと思います。 濃度の厳密な定義を知りたいのですがこの "実は集合全体の集ま…ことは当然認めてもよいだろう" の箇所の曖昧さをすっきり解消させるにはどう記述すればいいのでしょうか? 公理的集合論の書籍でさえも濃度の定義の際に「集合全体の集まりを類別する」という表現をさり気なく記述せずに類別によって濃度の定義をしているようです。 濃度を厳密に定義する場合,どういう手順で類別を定義すればいいのでしょうか? また, 歯切れのいい濃度の定義をしてある書籍やサイトがあれば是非ご紹介下さい。

  • 濃度を求める問題

    次の集合 A = {S⊂R | Sは高々可算 } の濃度を求めよ、という問題の解き方が分からず困っています。 以下、Nを連続濃度(アレフ)とします。 (アレフが入力できないので…すいません。) 写像 f :R→A , x ↦ {x} は単射なので、N≦ |A| である事が分かります。 さらにA⊂2^Rなので、|A|≦2^Nである事も分かります。 この後、どうしたらよいのかが分かりません。 Sが有限の場合なら解けるのですが、可算となると写像をどのように作ればいいかがピンときません。 濃度はNか2^Nになるのだと思いますが… 分かる方がいましたら回答よろしくお願いします。

  • 「有限集合の部分集合は有限集合」の証明

    有限集合Xの部分集合Aは有限集合であることの証明がわかりません。 X;集合とします X⊇A とします。 とあるテキストによると,Aが有限集合であるとは, __∀F∈P(P(X))[F;A上帰納的 ⇒ A∈F] との事です。 ここで,Xの冪集合の冪集合P(P(X))∋FがA上帰納的であるとは, __φ∈F∧∀C∈F∀x∈A[C∪{x}∈F] であると事,とされています。 この定義に従って, _X;有限集合 ⇒ A;有限集合 を証明したいのですが,証明がさっぱり分かりません。 是非とも証明を御教え下さい。宜しくお願い致します。