• 締切済み
  • 困ってます

可算濃度2

Xを自然数全体集合Nの有限部分集合全体とするとき、|X|と可算濃度が同じである証明の仕方を、分かりやすく教えて下さい!

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数68
  • ありがとう数1

みんなの回答

  • 回答No.1

X の各元 s に対して s の元の和を f(s) としましょう。 任意の自然数 n について、 f(s)≦n となる s の個数は有限ですから、 X の元に、f(s) が大きくない順に 番号を付けてゆけば、 X 全体に付番することができます。 よって、|x|≦|N|であることが判ります。 一方、X に含まれる一元集合を考えれば、 |X|≧|N|は自明です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!難しかったですが、ヒントになりました!

関連するQ&A

  • 可算かどうか

    「XをN(自然数の集合)の有限部分集合全体の集合とするとき、|X|=アレフゼロ(可算濃度)となることを証明せよ」 を教えてください。 自然数Nと一対一対応もしくは、先頭から番号をつけていくことができるというような証明の仕方ではないのかなとは思うのですが、具体的な証明方法が思いつきません、教えてください。 よろしくお願いいたします。

  • 可算無限についてお願いします

    集合Xが有限集合の時、 ∪{Xの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…|X|) は、Xのべき集合(2^X)と同じものですよね。 でも集合Xが有限集合ではなく、自然数の集合Nであった場合、 ∪{Nの、要素数kの部分集合を全て集めた集合}  (k=0,1,2…) は可算無限であり、Nのべき集合(2^N)は非可算無限だと聞きましたが、 その違いはいったいなぜ起こるのですか? ※ 集合Y(≠∅ )に対し f:Y→2^Y となる全射が存在しないので、X=Nとすることで2^Nが非可算である事は理解しています。

  • 自然数の濃度

    問、Xを自然数全体の集合Nの部分集合全体とするとき、   |X|>|N| (||は濃度をあらわします。)を証明せよ。 この問の証明を教えてください。 解法として、 1).|X|≧|N|が成り立つ。 2).|X|≠|N|である。 を示したいのですが、2)が分かりません。 XがNの部分集合だったら、全射にならないことは直観でも分かるのですが、 XがNの部分集合全体の時はどう考えればいいのでしょうか。

  • 可算であることの証明

    可算についてなのですが、次の2つがどうしても証明出来ません。 1.可算集合の無限部分集合は可算である 2.有理数a,bを端点とする開区間(a,b)全体の集合は可算である 一応濃度、可算集合については一通り勉強したのですが…。 言っている事はなんとなくわかるのですが、自分でいざ問題を解いてみる(証明してみる)と何をどう書いてよいのやらまったくのお手上げです。 きちんと理解できていないのが原因だと思うのですが、いろいろな本を読み漁ってもこの”集合論”という分野、いまいちピンときません。 どうか回答のほどよろしくお願いします。

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

  • 可算濃度

    「無理数全体の集合Pについて、Pの濃度は可算濃度より大きい」 この証明の仕方を教えて下さい。 カントールの定理を使わずにお願いします。

  • 位相 可算集合

    この問題の解答と途中式をおしえてください!! できれば全解をお願いします。 何度してもできません!! Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ

  • 位相 可算集合

    Xを非可算集合とし、AをXの可算な部分集合とする。このとき、XとX-Aが対等であるときを証明せよ。 この問題の解答と経過を教えてください!! おねがいします!!

  • 位相 可算集合

    Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ よくわかりません!! f:N×N→N の全単射とする。 A_n={f(n,m)|m∈N}とすればよい。 と使えばいい思っているんですが、どのようにしたら いいかわかりません!この先の解答を教えてください!! 経過もお願いします!!

  • 集合の濃度

    すみません 以下の2題を教えて頂ければ嬉しいです。 ネットの海を彷徨ってみたのですが よくわからなくて… 1. Aを無限集合、Bを要素の数が2以上の有限集合とするとき、AからBへの写像 全体の集合Map(A, B)の濃度は真に大きいことを示せ。 2. 開区間(-1, 1)の可算個の直積(-1, 1)×(-1, 1)×…は(-1,1)と 濃度が等しい。このことを証明しろ。

専門家に質問してみよう