• 締切済み

可算濃度

「無理数全体の集合Pについて、Pの濃度は可算濃度より大きい」 この証明の仕方を教えて下さい。 カントールの定理を使わずにお願いします。

みんなの回答

  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

実数=有理数∪無理数 ですから、 実数全体が可算濃度より大きいことと、有理数全体が可算濃度であることを示せば、背理法で証明できませんか。

pu-ko2255
質問者

お礼

ありがとうございました!ヒントになりました!

関連するQ&A

  • 可算濃度2

    Xを自然数全体集合Nの有限部分集合全体とするとき、|X|と可算濃度が同じである証明の仕方を、分かりやすく教えて下さい!

  • 無理数全体のつくる集合

    集合(入門レベル)を勉強し始めたばかりで、 「無理数全体の集合Pについて、Pの濃度は可算濃度より大きい。」 ことの証明について悩んでいます。 証明の仕方としては、 (1)|P|=|PUQ|(Qは有理数全体の集合とする。)を証明して、 (2)R=PUQ(実数の集合をRとする。)より、  |P|=|R|=c(cは連続体濃度)が成り立ち、 (3)c>可算濃度より、  |P|>可算濃度           (証明終わり) これでいいのでしょうか。 もっと適当な証明があれば教えてください。  

  • 可算かどうか

    「XをN(自然数の集合)の有限部分集合全体の集合とするとき、|X|=アレフゼロ(可算濃度)となることを証明せよ」 を教えてください。 自然数Nと一対一対応もしくは、先頭から番号をつけていくことができるというような証明の仕方ではないのかなとは思うのですが、具体的な証明方法が思いつきません、教えてください。 よろしくお願いいたします。

  • 可算であることの証明

    可算についてなのですが、次の2つがどうしても証明出来ません。 1.可算集合の無限部分集合は可算である 2.有理数a,bを端点とする開区間(a,b)全体の集合は可算である 一応濃度、可算集合については一通り勉強したのですが…。 言っている事はなんとなくわかるのですが、自分でいざ問題を解いてみる(証明してみる)と何をどう書いてよいのやらまったくのお手上げです。 きちんと理解できていないのが原因だと思うのですが、いろいろな本を読み漁ってもこの”集合論”という分野、いまいちピンときません。 どうか回答のほどよろしくお願いします。

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

  • 濃度の厳密な定義はもはや不可能なのですか?

    識者の皆様宜しくお願い致します。 最近,集合位相入門(松坂和夫)を購入し拝読しておりますがこの本のp65にて 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろう』 という記述がありますが,これは正確に解釈すると 『濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろうが万一ダメだったとしても当方は一切責任持ちません』 と見て取れ,何とも歯切れの悪い定義だなぁと感じました。 結局,濃度(という同値類)はφと有限集合{1,2,…,n}と可算集合N(=:アレフ_0)とアレフ_0の非可算集合Rとアレフ_1の非可算集合2^R,アレフ_3の非可算集合3^R,… と可算個に類別できるのだと思います。 濃度の厳密な定義を知りたいのですがこの "実は集合全体の集ま…ことは当然認めてもよいだろう" の箇所の曖昧さをすっきり解消させるにはどう記述すればいいのでしょうか? 公理的集合論の書籍でさえも濃度の定義の際に「集合全体の集まりを類別する」という表現をさり気なく記述せずに類別によって濃度の定義をしているようです。 濃度を厳密に定義する場合,どういう手順で類別を定義すればいいのでしょうか? また, 歯切れのいい濃度の定義をしてある書籍やサイトがあれば是非ご紹介下さい。

  • 非可算濃度を持つ臨界値の集合

    非可算濃度となる臨界値の集合をもつ滑らかな関数は存在しないようですが、理由を教えてください。

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。  

  • 集合の濃度

    すみません 以下の2題を教えて頂ければ嬉しいです。 ネットの海を彷徨ってみたのですが よくわからなくて… 1. Aを無限集合、Bを要素の数が2以上の有限集合とするとき、AからBへの写像 全体の集合Map(A, B)の濃度は真に大きいことを示せ。 2. 開区間(-1, 1)の可算個の直積(-1, 1)×(-1, 1)×…は(-1,1)と 濃度が等しい。このことを証明しろ。

  • 濃度に関するかなり初歩的な質問です

    集合位相入門(松坂和夫)のp69に次のような定理と証明が書いてありました。 [定理] 濃度m,nについて、 m≦n,n≦mならばm=n [証明] CardA=m,Card=nでなる集合AとBをとれば、 m≦nであるから("≦"の定義より)、AからBへの単射が存在し、 n≦mよりBからAへの単射が存在する。よって、ベルンシュタインの定理より、AとBは対等(A~B)である。ゆえにm=nである。 また、 濃度は"集合全体の集まり"を対等関係によって類別したときの各"同値類"である。実は集合全体の集まりというのは、我々が今まで考えていた意味での集合ではないが、"類別"の考えを少し広めて用いることは当然認めてもよいだろう。 みたいな記述もあったのですが、 それなら(p56の(6.2)にもあるように) 同値類n、mの代表元A、Bをとってきて、 それらが対等関係ならば同値類も等しいから、m=nとできると思いました。 [質問1]証明中の"ゆえにm=n"というのはこうゆうことでしょうか? [質問2]"同値類"という言葉は、"類別"という用語と違って、"集合全体の集まり"を集合と見るか見ないかにかかわらず使用できる言葉ですよね? どなたか詳しい方がいらっしゃいましたら回答よろしくお願いいたしますm(_ _)m