• ベストアンサー
  • すぐに回答を!

可算であることの証明

可算についてなのですが、次の2つがどうしても証明出来ません。 1.可算集合の無限部分集合は可算である 2.有理数a,bを端点とする開区間(a,b)全体の集合は可算である 一応濃度、可算集合については一通り勉強したのですが…。 言っている事はなんとなくわかるのですが、自分でいざ問題を解いてみる(証明してみる)と何をどう書いてよいのやらまったくのお手上げです。 きちんと理解できていないのが原因だと思うのですが、いろいろな本を読み漁ってもこの”集合論”という分野、いまいちピンときません。 どうか回答のほどよろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数1861
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.4
  • shkwta
  • ベストアンサー率52% (966/1825)

No.1です。 補足の2.ですが: >なぜ和をとるのでしょう? 要するに、何かのルール(何でもいい)を決めて、集合の要素の全部を一列に並べて番号を付けることができることを示せば、可算であることが証明できます。 和をとるのはその方法の一つということで、他の方法でも可能ならかまわないのです(和をとるのがいちばん簡単だと思いますが)。 >開区間全体として可算となりえるのでしょうか 2つの有理数a,b(a<b)の組に、有理数を端点とする開区間が1対1に対応しているということであって、開区間の中身は関係ありません。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

shkwtaさんの回答を見て、自分でももう一度考えてみました。「なるほど、そういうことだったのかと」納得です。 いや、奥が深いというか、なんというか…。イメージしづらくてなかなか本だけでは分かりづらかったのですが、とても参考になりました。 丁寧な回答、ありがとうございました。

関連するQ&A

  • 有理数集合の濃度は非可算?!

    有理数集合の濃度は非可算?! 有理数集合Qの濃度は可算ですが、以下のように考えたところQ(の部分集合)が非可算無限集合になってしまいました。 どこが誤りかご教授願います。 正の有理数は素数のベキを用いて 2^α×3^β×…(α,β,…∈Z) で一意的に表される。 素数の個数は可算無限個なので Q+とZの可算無限個の直積が一対一対応する。 このときZも可算無限集合なので、可算無限集合の可算無限直積で非可算無限集合になる。 よってQ+は非可算無限集合である。

  • 位相 可算集合

    この問題の解答と途中式をおしえてください!! できれば全解をお願いします。 何度してもできません!! Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ

  • 位相 可算集合

    Aを可算集合とする。このとき、次の条件(1)(2)(3)を満たすAの 部分集合族{A_n|n∈N}(Nは自然数とする)が存在することを証 明せよ。 (1)すべてのn∈NについてA_nは可算集合である。 (2)A=∪_n∈N(A_n) (3)n≠n'⇒A_n∩A_n'=Φ よくわかりません!! f:N×N→N の全単射とする。 A_n={f(n,m)|m∈N}とすればよい。 と使えばいい思っているんですが、どのようにしたら いいかわかりません!この先の解答を教えてください!! 経過もお願いします!!

その他の回答 (3)

  • 回答No.3

2.について。 このような集合の要素はaとbの値によって一意に決まりますから、結局 有理数の無限部分集合×有理数の無限部分集合(×は直積)という集合になります。(1.による) 可算集合×可算集合の濃度は加算ですから(ということの説明が#1さんの2.の説明です)求める集合も可算です。 なお#2さんは(a,b)の要素と(a,b)を要素とする集合を誤解してらっしゃるので、 連続濃度だとおっしゃっているのですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧な回答、とても参考になりました。pyon1956の回答を参考にしつつ、改めて自分でお考えてみました。一応証明できました(?) 私の理解力が足りないせいもありますが、本はなかなかシンプルに書かれていてちょっと数学の苦手な私にはつらいものがありまして…。pyon1956さんの説明ように書かれているものはないかと自分の能力を棚上げにして思ってしまいます。 ありがとうございました。

  • 回答No.2

1,可算集合は最小の濃度の無限集合であることから明らか。 2,命題が間違っているのでは?可算ではなく連続の濃度です。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

1.について、ずばりと指摘していただきあほな質問をしてしまったと気付きました…。 回答ありがとうございました。

  • 回答No.1
  • shkwta
  • ベストアンサー率52% (966/1825)

可算を示すには、その集合と自然数の集合が1対1に対応することを証明します。 1.親の可算集合で、要素に自然数の番号をつけておきます。部分集合のほうでは、親でつけた番号の小さい順に番号を付けます。 2.すべての有理数に自然数の番号を付けておきます。有理数のa,b(a<b)の組(a,b)について、aの番号とbの番号の和の小さいもの、和が同じならaの番号の小さいものから順に並べて番号を付けます。

共感・感謝の気持ちを伝えよう!

質問者からの補足

補足というか、回答を読んで… 1.そうですよね。これ以上答えようのない、すごいアホな質問をしてしまいました。 「無限部分集合をつくる」という”無限”に変に引っかかっていたのですが、1日ドップリはやっていたもので頭がトリップしていました…。 (証明の書き方に多少不安はありますが何とかできました) 2.すいません。全然分かってないみたいです。まず、なぜ和をとるのでしょう? それと、あくまで端点が有理数であって、その間に含まれるのは有理数だけとは限りませんよね…??(もしかしてこの解釈からして間違っているのでしょうか?)となると、開区間全体として可算となりえるのでしょうか?? 本当に勉強が足りなくて申し訳ないのですが出来たら回答お願いします。

関連するQ&A

  • 可算濃度2

    Xを自然数全体集合Nの有限部分集合全体とするとき、|X|と可算濃度が同じである証明の仕方を、分かりやすく教えて下さい!

  • 非可算無限なグラフ

    単に興味本位からの疑問なのですが・・・ グラフGは、頂点集合Vと辺集合Eを用いて、定義するのが普通ですよね。(もちろん、定義の仕方は色々ありますが) このとき、頂点集合Vと辺集合Eは、無限にする場合でも、暗黙のうちに可算集合と考えるのが普通ですよね。そうしないと、i,jのような添え字を用いた操作ができませんから。 このV,Eを非可算集合、例えば、実数濃度と考えた場合のグラフの理論は、研究されているのでしょうか?そのような理論の、応用はあるのでしょうか?

  • 集合の濃度の問題です

    有理数a,b(a<b)を端点とする開区間(a,b)全体の集合の濃度はNo(アレフゼロ)であることを証明せよという問題です。 わたしには全くわかりません。1から詳しくお願いします

  • 可算かどうか

    「XをN(自然数の集合)の有限部分集合全体の集合とするとき、|X|=アレフゼロ(可算濃度)となることを証明せよ」 を教えてください。 自然数Nと一対一対応もしくは、先頭から番号をつけていくことができるというような証明の仕方ではないのかなとは思うのですが、具体的な証明方法が思いつきません、教えてください。 よろしくお願いいたします。

  • "無理数全体の集合から実数全体への全単射が存在する"の証明の説明をお願いします。

    次の問題の解答で分からないところがあるので説明をしてもらいたいです。 問: 無理数全体の集合からRへの全単射が存在することを証明せよ 解: R-Q から R への全単射の存在を示せばよい R-Q は無限集合であるから、可算部分集合 A が存在する ここで Q は可算集合なので、A∪Q は可算集合 よって全単射 f: A→A∪Q が存在するので 関数 g:R-Q →Rを     g(x)= { x (x∈R-A)         〔 f(x) (x∈A) と定義すると g は全単射である ■ 最後のところで、なぜgを上のように定義すると全単射になるのかがわかりません。 よろしくおねがいします。

  • アレフ0より小さな濃度をもつ無限集合

      アレフ0(可算集合の濃度)より小さな濃度をもつ無限集合はありますか。  

  • 離散数学の問題について質問させていただきます。

    離散数学の問題について質問させていただきます。 以下の2つの問題がどうしても分かりません。 解答・解説ともに手元に無く、大変困っております。急を要しております。 どうか力をお貸し下さい。よろしくお願いします。 (1)可算集合の高々可算個の和集合が可算集合であることの証明 (2)Nを自然数全体の集合(N = {1,2,3…})としたとき、Nのべき集合すなわちすべての部分集合の集合は、可算集合でないことの証明

  • 第2可算公理

    X,Yが第2可算性を持つ位相空間のとき、X×Yも第2可算性を持つことを示せ。 という問題です。 第2可算性を持つ⇔位相空間が可算集合からなる基を持つ で定義されています。 更に、 位相空間において、β⊂Oは、任意の開集合がβの要素の和集合で書けるとき、位相Oの基と言います。 証明の方針がいまいち分からないので、どなたかアドバイスもしくは証明をお願いします。

  • 直積集合 N*Z の可算集合

    可算集合の証明の問題です。 (1)数え方の規則:N→N*Z を与えなさい。 (2)13番目の要素は?(1,1,1)(-2,1,4)は何番目の要素? N^2のときとは違って困ってます。よろしくお願いします。

  • 濃度についてーその2

      任意の集合はそのべき集合を作り続けることによって、無限に増大する濃度を持つ集合列が生成できることは証明されています。 例えばこれを可算集合から開始した場合、 可算集合の濃度=アレフ0 可算集合のべき集合の濃度=アレフ1 可算集合のべき集合のべき集合の濃度=アレフ2 可算集合のべき集合のべき集合のべき集合の濃度=アレフ3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列アレフ0、アレフ1、アレフ2、・・・・が生成されます。 また同様にして連続体から開始した場合、 連続体の濃度=ベート0 連続体のべき集合の濃度=ベート1 連続体のべき集合のべき集合の濃度=ベート2 連続体のべき集合のべき集合のべき集合の濃度=ベート3         ・         ・         ・         ・ 以下無限に続く。 このように無限に増大する濃度を持つ集合列ベート0、ベート1、ベート2、・・・・が生成されます。 さて質問です。 1. 任意の自然数nに対して適当な自然数mを取ることにより、ベートn=アレフmを成立させることが出来ますか。 2. 任意の集合に対しその濃度をAとするとき、適当な自然数mやnを取ることによりA=アレフm、A=ベートnを成立させることが出来ますか。