• ベストアンサー
  • すぐに回答を!

第2可算公理

X,Yが第2可算性を持つ位相空間のとき、X×Yも第2可算性を持つことを示せ。 という問題です。 第2可算性を持つ⇔位相空間が可算集合からなる基を持つ で定義されています。 更に、 位相空間において、β⊂Oは、任意の開集合がβの要素の和集合で書けるとき、位相Oの基と言います。 証明の方針がいまいち分からないので、どなたかアドバイスもしくは証明をお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数365
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

Xの開基とYの開基の直積から、直積位相の開基を構成するときに、 任意濃度の合併を作るといっても、もとになる開基の直積が可算だから、 合併する開集合の選び出し方が可算通りしかなく、直積位相の開基も可算にしかならない ということです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

可算集合であることは直感的に分かりますね。 ありがとうございました。

関連するQ&A

  • 位相についてのご質問です。

    位相について質問です。 「集合Sの部分集合族Kが (1)O(空集合)、SがKに含まれる (2)集合A,BがKに含まれるならAとBの共通集合もKに含まれる。 (3)任意のKの元Fmに対してFmの全和集合もKに含まれる。 以上を満たす時,KはSに位相を与えるといい(S,K)を位相空間という。 そして、Kの元を開集合といいKを開集合系という。」 このKの元を開集合といいという所からさっぱり分かりません。 どこがどう開集合なんですか? 例えばS={1,2,3}とすればK={O,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} となってこれは(1)から(3)を満たすので(S,K)は位相空間でKの元は開集合にもなってないと思うのですが。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相

    数学科2年のものです。 位相空間についての授業が始まったのですが、演習問題で、わからない問題があります。 初歩的な問題かもしれませんが、どなたか解答お願いします。 集合S={1,2,3,4}に部分集合族Lを L={Φ、{1}、{1,2}{1,3}{1,2,3}、S} により与える。Sの部分集合{1,2,4}をTとおく。 (1)(S,L)は位相空間であることを示せ。 (2)位相空間(S、L)においてTの内部を求めよ。 (3)位相空間(S、L)においてTの閉包、境界を求めよ。 特に(1)の位相空間の定義の、「Lに属する任意個の和集合がLに属すること」の確認の仕方に自信がないので、お願いします。

その他の回答 (2)

  • 回答No.2
  • rinkun
  • ベストアンサー率44% (706/1571)

Xの基とYの基の積によってX×Yの基を構成して、それが確かにX×Yの基になっていることを示せば良いのでは?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ちょっとした回答でしたが、この問題を紐解くキッカケになりました。 ありがとうございました。

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

>証明の方針がいまいち分からないので、どなたかアドバイスもしくは証明をお願いします。 特に何も考えるようなことはありません。そのままストレートに証明できます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

大学数学に触れて日が浅いものですから「そのままストレートに証明できる」と言われてもピンときませんでした。 長い時間考えた今でも完璧に把握できたわけではありません。

関連するQ&A

  • 位相の問題です。

    位相の問題です。 (X,Q)、(X,Q'):位相空間 X×Y={(x,y)|x∈X,y∈Y} Qx×y:=U×V{U∈Q,V∈Q'の形の任意個のX×Yの部分集合の和集合} ここで (X×Y,Qx×y):位相空間になることを示せ。 わかる方いましたらよろしくお願いいたします <(_ _)>

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 直積位相

    X、Yを位相空間とする。 『W⊂X×YがX×Yの開集合⇔任意の(x,y)∈Wに対して、x∈XのXにおける開近傍U⊂X、y∈YのYにおける開近傍V⊂YでU×V⊂Wとなるものが取れる』 と定義することにより、X×Yは位相空間になる事を示せ。 という問題です。 X、Yが位相空間なので、それぞれの位相をO(X)、O(Y)としてX×Yの位相をO(X×Y)={Uλ×Vλ;Uλ∈O(X)、Vλ∈O(Y)}とおいて証明しようとしたのですが、これでは上記の定義が満たされていないと注意され詰まってしましました。 どなたかアドバイス(もしくは証明)していただけませんでしょうか?

  • 生成する開基の証明問題で示す事は?

    [補題] Xを位相空間とせよ。CをXの任意の開集合Uで∀x∈Uに対し,∃c∈C;x∈c⊂UとなるようなXの開集合の族とする。この時,CはXの開基となる。 [定義] Bが{(a,b);a,b∈R,a<x<b}ならばBによって生成される位相をstandard topologyという。 [定義] Bが{[a,b);a,b∈R,a<x<b}ならばBによって生成される位相をlower limit topologyという。 [定義] 位相空間Xのある開集合の族Bが次の条件を満たす時,BはXの開基という。 任意の開集合が与えられた時,∀x∈G,∃b∈B;x∈b⊂G. [定義] BをXの開基とする。T={U∈2^X;∀x∈U,∃b∈B;x∈b⊂U}の時,TはBから生成される位相である。 [問] 上記の補題を使って (1) 可算族B_Q={(a,b);a,b∈Q,a<b}はR上のstandard topologyを生成する開基である事を証明せよ。 (2) 族L={[a,b);a,b∈Q,a<b}はR上のlower limit topologyを生成する開基である事を証明せよ。 が解けずに困っています。 (1)の証明は,可算族B_QがR上のstandard topologyを生成する開基である事を示せばいいのだからstandard topologyの定義から {U∈2^R;∀x∈U,∃b∈B_Q;x∈b⊂U}={U∈2^R;∀x∈U,∃b∈B;x∈b⊂U} (但しB={(a,b);a,b∈R,a<x<b})となる事を示せばいいのでしょうか? (2)の証明も {U∈2^R;∀x∈U,∃b∈L;x∈b⊂U}={U∈2^R;∀x∈U,∃b∈B;x∈b⊂U} (但しB={[a,b);a,b∈R,a<x<b})となる事を示せばいいのでしょうか? こんがらがってきました。とりあえず何を示せばいいのかお教え下さい。すいません。お願いします。m(_ _)m

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。

  • 位相空間

    位相初心者です。次の問題がよく分かりません。 問.実数直線R1の位相をTとする。   BをTに各無理数についてそれだけを元とするRの部分集合を   すべてつけ加えたRの部分集合族     B=T ∪ {{x}:x∈P}   とする。このBにおいて生成されたR上の位相T_Mに対して、   位相空間(R,T_M)をMで表す。     このMについて、次を求めよ。(証明付きで。)  (1) i(Q)、i(P) (iは内部を表す。)  (2) Qの閉包、Pの閉包 (1)は、Qは有理数全体の集合だから、Qに含まれるMの開集合全体の 和集合は、Φ となる。 (2)も同様に、Qを含むMの閉集合全体の共通集合はQである。 こんな感じでいいのでしょうか。もっと適当な証明があれば、 教えてください。

  • 離散数学の問題について質問させていただきます。

    離散数学の問題について質問させていただきます。 以下の2つの問題がどうしても分かりません。 解答・解説ともに手元に無く、大変困っております。急を要しております。 どうか力をお貸し下さい。よろしくお願いします。 (1)可算集合の高々可算個の和集合が可算集合であることの証明 (2)Nを自然数全体の集合(N = {1,2,3…})としたとき、Nのべき集合すなわちすべての部分集合の集合は、可算集合でないことの証明

  • 閉包と集積点と内部

    閉包と集積点と内部(及び境界)の関係を、初心者でもわかるように教えていただけないでしょうか。特に、それらが集合において何を意味しているのかを教えていただけないでしょうか。 閉包A ̄は、 任意のxの近傍V(x)において、V(x)∩A≠φ(φは空集合)であるxの集合 集積点a(A)は、 T∩(A-{x})≠φとなるxの集合 (Aの相違な元列が1点Pに近づくときのPのこと…?) 内部i(A)は、 Aに含まれる位相空間(X,τ)の開集合全体の和集合である。i(A)={a∈A:V(a)⊂Aとなる近傍V(a)が存在する}

  • 位相空間の定義に関する疑問

    位相空間の定義: 集合Sが次の条件を充たす集合族をもつとき「位相空間」とよぶ 1. 空集合と、S自体がその集合族に属する 2. 集合族に属する集合の交わりが集合族に属する 3. 集合族に属する無限個の集合の和集合が集合族に属する というのがありますが、1番目の条件は当然として、2番目と3番目の条件で、どうして2は有限個の集合の交わりで定義され、3だけが無限個の集合の和集合で定義されているのかわかりません。例えば、2の条件を「集合族に属する無限個の集合の交わりが集合族に属する」と書き換えるのはどうしてだめなんでしょうか?(具体的に、ちょうど良い例などが浮かばずに困っています。)

  • X:n次ユークリッド空間 R^n

    X:n次ユークリッド空間 R^n U:密着位相,離散位相でない位相 とします. このとき,∀x∈Xに対し,{x}を考えたとき,{x}は(X,U)内で開集合になりますか? 開集合の定義は,(X,U)が位相空間であるとき,Uの元のことを言うのだと思うのですが,これは位相Uの作り方によって変わってきますよね? xをXから任意に選んできても,{x}を含むように位相Uを作れば,そのUを位相とする位相空間(X,U)内であれば{x}は開集合ですか? もし離散空間であれば明らかに{x}は開集合ですし,密着空間であれば{x}は開集合でないと言えます.しかし上記のような位相の場合は,一概には言えないという解釈でいいのですか?というより,先にある位相空間が与えられていて,それに対して{x}が開集合かどうかという話でしょうか? 長々とすいませんが,よろしくお願いいたします.