ベストアンサー 証明について 2011/04/21 21:24 右の図のように,AB=ACの二等辺三角形ABCで,辺BCの中点Mから,辺AB,ACに垂線MD,MEをひく。 このとき,BD=CEであることを次のように証明した。空らんをうめなさい。 (証明)△BMDと△CMEにおいて ∠BDM=∠CEM = (ァ) BM=CM…(ィ) ∠DBM=∠ECM…(ウ) したがって 直角角形の(エ)ので △BMD≡△BME 合同な図形の対応する(ォ)は等しいので BD=CE アイウエオ を教えて下さい。お願いします。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー tomokoich ベストアンサー率51% (538/1043) 2011/04/21 21:43 回答No.1 (ア)90° (イ)Mは辺BCの中点 (ウ)二等辺三角形の底角は等しい (エ)斜辺と一つの鋭角が等しい (オ)辺 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 証明問題がわかりません 証明問題がわかりません AB=AC の二等辺三角形ABCがあります。 AC上に点Dが、AB上に点Eがあり BD=CE である。 また BDとCEの交点をFとする このとき 三角形BCF が二等辺三角形であることを証明せよ。 証明を教えてください! 図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください! 辺の長さが等しいことの証明 三角形の合同条件が導けないので質問します。 問題は、「角Aが直角の直角二等辺三角形ABCの頂点Aを通って、BCに平行にひいた直線上にDをBD=BCにとり、BDと辺ACの交点をEとすれば、CD=CEである。」ことを証明する です。 本では3通りの解法を紹介しているのですが、そのうち1つがわかりません。著者の考え方は、もしCD=CEならば△CDEと△BCDは一つの底角Dを共有する2等辺三角形であるから、相似のはずである。したがって∠DBC=∠ACDとなるはずである。そこで∠ACDの移動を考え、DからACに平行線をひきBCとの交点をKとすると、∠CDK=∠ACD=∠DBC,よってDK^2=BK*CK、すなわちAC^2=BK*CKはずである。これはAB=ACから、 BK*CK=AK^2-AB^2=BD^2-AB^2=BC^2-AB^2=AC^2のように証明できる。と書いてあります。 自分がわからないのは、AK^2-AB^2=BD^2-AB^2の箇所です。AK=BDをいうために△ADK≡△DABを、2辺とその挟む角で証明しようとしましたがうまくいきませんでした。ADは共通、DからACに平行線をひいたので、平行四辺形ができAB=AC=DKよりAB=DK、しかし∠ADK≡∠DABが導けませんでした。 どなたか、AK=BDの証明を教えてください。お願いします。 数学の証明問題について 数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m 直角二等辺三角形を用いた平面図形の証明問題 ⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。 三角形の3辺の長さの性質の証明 定理1、2辺の長さの和は、他の一辺の長さより大きい 定理2、2辺の長さの差は、他の一辺の長さより小さい を証明する問題で、 1の証明 △ABCにおいて辺BAのAを越える延長上にAD=ACであるような点Dをとると、BD=AB+AC…(1) また△ACDは、∠Aを頂点とする二等辺三角形であるから ∠ACD=∠ADC △BCDにおいて、線分ACは∠BCDの内部にあるから ∠BCD > ∠ADC すなわち∠BCD > ∠ADC=∠BDC ゆえに、定理2より BD>BC・・・(2) (1)、2から AB+AC>BC 同様にしてBC+BA>CA,CA+CB>AB (終) 定理1の証明はできたんですが定理2の証明がどうしてもわからないのでどなたか教えてください。 定理1を使って証明したいです。お願いします 中二の証明の問題です この証明のやり方(進め方)がわかりません。教えてください。 AB=ACである二等辺三角形ABCの辺AB上に点Pをとり、点Pを通るBCへの垂線が辺BC、辺CAの延長と交わる点をそれぞれM,Nとする。このとき、三角形ANPは、二等辺三角形になる。このことを証明しなさい。 お願いいたします。 平面幾何 △ABCの辺AB,ACの中点をそれぞれD,Eとし、辺BE、CDの交点をGとする。 4点D,B,C,Eが同一円周上にあるとき、以下のことを証明せよ。 (1)AB=AC (2)2∠ABG=∠BAEのとき∠BAG=∠ABG (3)(2)の条件を満たすとき△ABCは正三角形である この問題を解いているのですが、 (1)でAB=ACを示すことはBD=CEを示すことで、△BCDと△CBEが合同であることを利用して証明してみました (2)からがわからなくて困っています。 △ABGが二等辺三角形であることを示すのでしょうか?もしそうだとした場合どのように示せばいいのでしょうか? 回答いただければ幸いです。よろしくお願いします 相似の証明教えて 写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないので証明すべて教えてください。 (2)はよくわからないので式も一緒に教えてください 数学です 証明問題でどうしてもわからない問題があるので教えてください (10)鋭角三角形ABCの重心をGとする。BGと辺ACの交点をD、 CGと辺ABの交点をEとするとき、BD=CEならばAB=ACであることを証明せよ。 よろしくお願いします。 3角不等式の証明。 3角不等式の証明。 3角形の2つの角が等しくないとき、大きい角に対する辺は小さい角に対する辺より大きいことの証明を背理法で中学生を対象に授業形式で20分程度で発表しなければなりません。 みなさんだったらどのような授業の構成・展開をしていきますか。 中学2~3年生相手にでも理解できるようわかりやすくお願いします。 とりあえず背理法で証明を作ってみましたが、とても20分は持ちません。 【証明】 △ABCにおいえて、∠B>∠Cならば、´AC>ABを証明する。 (1)AC=ABと仮定すると以前示した定理より、二辺が等しいならば、△ABCは二等辺三角形であるから∠B=∠C (2)AC<ABと仮定すると、以前示した定理より、三角形の二つの辺が等しくないとき、大きい辺に対する角は小さい辺に対する角より大きいため∠B<∠C いずれにしても仮定∠B>∠Cに反するから、AC>ABでなければなりたたない。 この証明を膨らませるには20分程度に膨らませるにはどうしたらいいでしょうか。 大至急お願いします! 相似の証明教えてください 写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないです。 (2)はよくわからないので式も一緒に教えてください 四面体の垂心の存在証明がわかりません 直辺四面体の垂心が存在する⇔AB⊥CD、 AC⊥BD、 AD⊥BC を証明するのですが、どう証明すればいいのか分かりません。おしえてください。 2等辺三角形の性質を使った証明の解法を教えて下さい 図において△ABCはAB=ACの二等辺三角形である。また、点DはDC=BCとなる辺AB上の点であり、点Eは、ED=AB,EC=ACとなる点である。このとき、△CEA=△ABCとなることを証明しなさい。という問題を解くにあたり、知っていないといけない項目について、教えて下さい。どうぞよろしくお願いします。 数学の 今学校の課題をしているのですがどうしても解けない問題があり、どなたかわかる方がいましたら是非解いていただきたく投稿しました(;_;) どなたかわかる方、よろしくお願いします(TT) 1、平行四辺形ABCDにおいて、ABの中点をE、CEとBDの交点をFとするとき、△FEBs△FCDを証明せよ 2、AB=AC=1の二等辺三角形ABCにおいて、辺BC上の点Dが、DA=DB、CA=CDを満たしている。△ABCs△DABであることを用いて、BDの長さを求めよ。更に Bを求めよ。 です(;_;) すみません、解る方よろしくお願い致します(;_;) 中3の相似の問題教えてください! 中3の相似の証明教えてください! 右の図の△ABCはAB=AC,AB:BC=2:1の二等辺三角形である。辺BC上にBD:DC=1:2となる点Dをとり、辺AC上に∠ADE=∠ABCとなる点Eをとる。 (1)△ABD∽△DCEを証明しなさい。 (2)AE:ECを求めなさい。 (3)二等辺三角形ABCの面積が54平方cmであるとき、△ADEの面積を求めなさい。 この問題です。分かるやつだけでもいいので教えてください!! 画像横になっていたらすみません;; 平面幾何の証明問題 △ABCにおいて内心Iを通るBCに平行な直線とAB,ACの交点をそれぞれD,Eとするとき、 DE=BD+CEであることを証明せよ。 証明おねがいします。 シュタイナー・レームスの定理 △ABCの ∠Bの角の2等分線とACの交点をD, ∠Cの角の2等分線とABの交点をE |BD|=|CE| とすると △ABCは2等辺3角形になる というのが 「 シュタイナー・レームスの定理 」 というのだそうですが BDとCEの交点をOとすると 「|BD|=|CE|」という条件が無くとも Oは内心だとはいえますが Oは重心だとなぜいえるのでしょうか? 「|BD|=|CE|」という条件抜きには 重心だといえないと思いますので この定理の正しい証明をお願いします 平面図形の証明について 本当はこんなことで皆様のお力を借りるようなことはしたくなかったのですが、 どうしても解けない問題があり、失礼ながらお手を借りたく存じます。 当方高校1年生です。 「△ABCの内心Iを通り、辺BCに平行な直線を引き、 辺AB、ACとの交点をそれぞれD、Eとする。 BD+CE=DEであることを証明せよ。」 という平面図形の証明の問題です。 角の二等分線定理、平行線の性質を用いて、 DI:EI=DB:EC、というのが出たのですが、 これでは、証明できませんよね。 あと、もし宜しければ、 「△ABCの2本の中線BE、CFの長さが等しいならば、 AB=ACであることを証明せよ。」 これもお願い出来ませんでしょうか。 重心や相似を利用したのですが、AB=ACは導けませんでした。 誠に勝手な質問であるのは重々承知しておりますが、 期日も迫ってきてしまったので、明日の夜までに、 御返答頂ければ幸いです。 どうか宜しくお願い致します。 証明の問題 タイトルどうりですけど、 △ABCで、∠B、∠Cの二等分線の 交点をPとし、Pを通り辺BCに平行 な直線がAB、ACと交わる点をそれぞれ D、Eとする。このとき、 BD+CE=DEであることを証明しなさい。 図 A △ B C という問題の答えを教えてください。。 問題わかりずらくてすいません。。