• ベストアンサー
  • 困ってます

証明を教えてください!

図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください!

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

∠EACと∠DABは、両方とも∠EABから直角を引いた角度だから同じ。 AB=AC AD=AE なので、 ⊿ADB≡⊿EAC よって、 BD=CE

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 直角二等辺三角形を用いた平面図形の証明問題

    ⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。

  • 数学の証明問題について

    数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m

  • 中3の相似の問題教えてください!

    中3の相似の証明教えてください! 右の図の△ABCはAB=AC,AB:BC=2:1の二等辺三角形である。辺BC上にBD:DC=1:2となる点Dをとり、辺AC上に∠ADE=∠ABCとなる点Eをとる。 (1)△ABD∽△DCEを証明しなさい。 (2)AE:ECを求めなさい。 (3)二等辺三角形ABCの面積が54平方cmであるとき、△ADEの面積を求めなさい。 この問題です。分かるやつだけでもいいので教えてください!! 画像横になっていたらすみません;;

  • 証明について

    右の図のように,AB=ACの二等辺三角形ABCで,辺BCの中点Mから,辺AB,ACに垂線MD,MEをひく。 このとき,BD=CEであることを次のように証明した。空らんをうめなさい。 (証明)△BMDと△CMEにおいて ∠BDM=∠CEM = (ァ) BM=CM…(ィ) ∠DBM=∠ECM…(ウ) したがって 直角角形の(エ)ので △BMD≡△BME 合同な図形の対応する(ォ)は等しいので BD=CE アイウエオ を教えて下さい。お願いします。

  • 三角形の問題

    ΔABCにおいて、AB=2√10、BC=11。 また、∠Aの三等分線と辺BCとの交点をD、Eとし、BD=2、DE=3、EC=6とする。さらに、AD=x、AE=yとする。 ここで、Xの値を求めたいのですが分かりません。 解説には、「ΔABD:ΔADE=BD:DE=2:3だから・・・(中略)・・・y=3√10となる。」 とあるのですが、、「ΔABD:ΔADE=BD:DE」の部分がなぜそうなるのか分かりません。誰か教えてくれないでしょうか。

  • 三角形の相似の証明をお願いします。

    中3数学の問題です。2つの二等辺三角形ABCとADEが頂点Aを一致させて、重なっています。三角形ABCの底辺BCと三角形ADEの辺ADが交差する点をFとし、 三角形ABCの辺ACとDEが交わる点をGとし、BCとDEが交わる点をHとします。このとき、三角形ABFとCGHの相似を証明してください。

  • 平面図形

    三角形ABCがある。AB=6、BC=10であり、AC上に点Dをとり、DCの長さを6とし、DBの長さを6とする。 また、ADの中点をEとする。辺ABを3:1に分ける点をFとする。 辺DBの延長と辺EFの延長して、交わった点をGとする。 このときAEの長さを求めよ。またBGの長さを求めよ。 と言う問題です。 わかっていることをまとめると 長さがわかっているのは AB=DC=DB=6 BC=10 ADを1:1に分ける点をE ABを3:1に分ける点をF △DBCと△ABDは二等辺三角形である と言うことが文章からわかると思います。 まずAEの長さを考えると 点DからBCに垂線を引き、その交点をHとする。 また△ABDは二等辺三角形だから、点Eと点Bを結ぶ △CDH∽△CBEであるから CD:CB=CH:CE 6:10=5:CE 6CE=50 CE=25/3 CD=6より DE=CE-CD  =25/3-6  =7/3 となり DE=EAなので AE=7/3となりました。 次に 辺の比を使って何とかGBの長さを求めようとしたのですがさっぱりわかりません。 すいませんが、詳しい解説をお願いします。またこのような問題の考え方がありましたら教えてください。

  • 証明問題がわかりません

    証明問題がわかりません AB=AC の二等辺三角形ABCがあります。 AC上に点Dが、AB上に点Eがあり BD=CE である。 また BDとCEの交点をFとする このとき 三角形BCF が二等辺三角形であることを証明せよ。

  • 高校数学・三角比

    今朝ほど問題を投稿した者です。図を記入していませんですみません。 (2)図の△ABCはAB=AC、BC=4の直角二等辺三角形である。線分BDとADの長さを求めよ。

  • 相似の証明教えてください

    写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないです。 (2)はよくわからないので式も一緒に教えてください