• 締切済み
  • すぐに回答を!

高校数学・三角比

今朝ほど問題を投稿した者です。図を記入していませんですみません。 (2)図の△ABCはAB=AC、BC=4の直角二等辺三角形である。線分BDとADの長さを求めよ。

この投稿のマルチメディアは削除されているためご覧いただけません。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
noname#142850
noname#142850

どこまで判ってて、どこから判らないんですかね。 さしあたり、題意から判る条件を全部図に書き込んでご覧なさい。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 高校数学・三角比の問題です。

    (1)角B=90°、BC=3、CA=4の△ABCにおいて、角Aの大きさをaとする。    sin a、cos a、tan aの値を求めよ。 (2)図の△ABCはAB=AC、BC=4の直角二等辺三角形である。線分BDとADの長さを求めよ。

  • 三角比

    AB=7,BC=5,CA=8の△ABCがある。 辺BCのC側の延長線上に点DをAB:AD=BC:CDとなるようにとる。線分CDの長さを求めよ。 AB:AD=BC:BDになるのはACが∠BADの二等分線になるとき。CD=xとおくとAD=7x/5 ここまでしかわかりません。どうすれば、この問題が解けるか教えてください。

  • 数学の三角比の問題です。

    AB=3、∠A=60°の△ABCがあり、△ABCの外接円の半径は√39/3である。 (1)辺BCの長さを求めよ。 (2)辺ACの長さを求めよ。また、tanBの値を求めよ。 (3)直線BC上に∠BAD=90°になるように点Dをとる。線分ADの長さを求めよ。 また、線分ACを折り目として、△ACDを折り曲げ、平面ABCと平面ACDが垂直になるようにする。 折り曲げた後の点Dに対して、線分BDの長さを求めよ。 宜しくお願いします。

  • 数学の課題について 三角比

    ∠A=90度の直角三角形ABCの頂点Aから、斜辺BCに垂線ADを下ろす。∠ABC=θ、BC=aであるとき、線分の長さをa、θを用いて表せ。という問題で、ACが求められません。どなたか解き方を教えください!!

  • 証明を教えてください!

    図の△ABCは、AB=ACの直角二等辺三角形である。辺BC上に点Dをとり図のように、AD=AEとなる直角二等辺三角形ADEをつくり、DEとACとの交点をFとする。 このとき「BD=CE」であることを証明しなさい。 という問題です。教えてください!

  • 高校 数学 円の性質 三角形と比 の問題

    高校 数学 円の性質 三角形と比 の問題 ニ十分ほど考えていますが、以下の二題が全く分かりません。入試とか模試の問題だと思います。わかる方御解答の方よろしくお願いします。 □1 図のようなBA=BCの二等辺三角形ABCと点Cを通り点Bで直線ABに接する円Oがある。また、円Oと辺ACとの交点のうちCでない方の点をDとするとき、AD=4,CD=5である。 (1)辺ABの長さを求めよ。 (2)線分BDの長さを求めよ。また、直線BCと△ADBの外接円O'との交点のうち、Bでない方の点をEとするとき、線分BEの長さを求めよ。 (3)(2)のとき、線分AEの長さを求めよ。また、線分ABと線分DEの交点をFとするとき、△BEFの面積を求めよ。 □2 AB=8、AC=6、角A=90°である直角三角形ABCがある。角ACBの二等分線と、辺ABの交点をP,直線CPと△ABCの外接円の交点のうち点Cでない方の点をQとする。 (1)線分AFの長さを求めよ。 (2)線分CPの長さを求めよ。また、線分PQの長さを求めよ。 (3)△ABCの内心をIとするとき、線分PIの長さを求めよ。また辺BCの中点をM,△AQIの重心をGとするとき、線分GMの長さを求めよ。 一気に質問してすみません。数学はかなり厳しい状況なので、よろしくお願いします。

  • 三角比

    AB=5,BC=4,CA=3の直角三角形ABCにおいて、∠Aの二等分線と辺BCの交点をDとする。 問、CDの長さを求めよ。 私が思うに,二等分線でAB:AC=5:3だからBD:CD=5:3になりますよね? このときBC=4なので4*3/8で答えは3/2となりました。 なのに模範解答は(√3)/2となっています。 なんでですか?直角三角形だから考え方がちがうんですか? わかる方、ぜひ解き方を教えてください。 お願いします。

  • 三角比の問題です

    ∠A=90°、AB>ACの直角三角形において 頂点Aから辺BCに下ろした垂線をADとし ∠ABCの大きさをθとする。 BC=13、AD=6であるとき、次のものを求めよ。 (1)BD,CDの長さ (2)cosθの値 教科書の練習問題で、答えがBD=9、CD=4と あるだけで、途中経過が全くわかりません(。>0<。) 5時間考えましたが分からないので教えて下さい。 ちなみに正弦定理や余弦定理を使わない解法を お願いします。(まだ勉強してないので)

  • 数学Iで分からない問題があります

    角C=90度である直角三角形ABCにおいて、角A=θ、AB=aとする。 頂点Cから辺ABに下ろした垂線をCDとするとき、次の線分の長さをa、θを用いて表せ。 (1)BC (2)AC (3)AD (4)CD (5)BD この問題が分かりません。 どなたか詳しく解説していただけないでしょうか?お願いします。

  • 数学I 三角比の問題

    基本的な問題ばかりですが回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCの外接円をOとする。円Oの点Aでの接線をlとし、l上の点DをBDとACが平行になるようにとる。さらに AB=3 , AC=4 , AD=15/4とする。 (1)△ABCと△BDAが相似になることを示せ。 (2)BCを求めよ。 (3)円Oの半径を求めよ 2.四角形ABCDは∠D=120°, AB=BC=CA=3を満たす。対角線AC,BDの交点をPとする。 (1)この四角形は円に内接することを示せ。 (2)∠ADBを求めよ。 (3)PB:PD=2のとき、PAを求めよ。 3.△ABCでABの中点をD、ACの中点をEとし、BEとCDの交点をGとする。次のことを証明せよ。 (1)△ABCと△ADEは相似 (2)△DEGと△CBGは相似 (3)BG:GE=2:1 4.△ABCでAB上に点Dがあり、AD=AC=BC=1 , BD=CDとする。 (1)△ABCと△BCDが相似なことを証明せよ。 (2) x = BDを求めよ。 5.△ABCで∠Aの二等分線とBCの交点をDとする。また、Cを通るABに平行な直線と∠Aの二等分線との交点をEとする。 (1)△ABDと△ECDが相似なことを証明せよ。 (2)AB:BD=AC:CDを証明せよ。