• ベストアンサー
  • 困ってます

三角形の相似の証明をお願いします。

中3数学の問題です。2つの二等辺三角形ABCとADEが頂点Aを一致させて、重なっています。三角形ABCの底辺BCと三角形ADEの辺ADが交差する点をFとし、 三角形ABCの辺ACとDEが交わる点をGとし、BCとDEが交わる点をHとします。このとき、三角形ABFとCGHの相似を証明してください。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数400
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • asuncion
  • ベストアンサー率32% (1862/5674)

△ABFと△DHFにおいて、 ∠ABF=∠FDH …… (1) ∠AFB=∠DFH …… (2) (1)(2)より、△ABF∽△DHF …… (3) 一方、△DHFと△CGHにおいて、 ∠FDH=∠GCH …… (4) ∠FHD=∠CHG …… (5) (4)(5)より、△DHF∽△CGH …… (6) (3)(6)より、△ABF∽△CGH

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.2

2つの二等辺三角形は、等しいのでしょうか?つまり、△ABCが点Aを中心に回転したものが△ADE?そうでないと、下の小さな三角形を経由して、二角が等しいため相似という証明はできなくなります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角形の相似

    こんばんは、次の問題でどうして相似になるのかが理解できないので、教えてください! 三角形ABCを平面内で、Bを中心にして回転させ、頂点Aがもとあった三角形の辺AC上にくるように移動する。頂点A,Cが移動した点をそれぞれ、D,Eとし、辺DEとBCとの交点をFとする。 このとき三角形BDAと三角形BECは相似である。 とあって、三角形BDAと三角形BECは相似になるのかがわかりません。回答お願いします・

  • 中3の相似の問題教えてください!

    中3の相似の証明教えてください! 右の図の△ABCはAB=AC,AB:BC=2:1の二等辺三角形である。辺BC上にBD:DC=1:2となる点Dをとり、辺AC上に∠ADE=∠ABCとなる点Eをとる。 (1)△ABD∽△DCEを証明しなさい。 (2)AE:ECを求めなさい。 (3)二等辺三角形ABCの面積が54平方cmであるとき、△ADEの面積を求めなさい。 この問題です。分かるやつだけでもいいので教えてください!! 画像横になっていたらすみません;;

  • 相似の証明教えてください

    写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないです。 (2)はよくわからないので式も一緒に教えてください

  • 相似の証明教えて

    写真のようにAB=ACの二等辺三角形がある。辺BC上に点Dをとり∠ABC=∠ADEとなるように辺AC上に点Eをとる。次の問いに答えよ (1) △ABD∽△DCEを証明せよ (2) AB=AC=12cm、BC=10cmとする。点Dが辺BCを2:3の比にわける点であるときAEの長さを求めよ (1)の相似条件が何かわからないので証明すべて教えてください。 (2)はよくわからないので式も一緒に教えてください

  • 図形の証明です。相似?手詰まりです!

    AB=ACである二等辺三角形ABCの内部の1点Pから辺BC,CA,ABにおろした垂線の長さをa,b,cとする。 bc=a^2 を満たす点Pは、三角形ABCの内心I、頂点B,Cを通る円上にあることを証明しなさい。 bc=a^2 より a:b=c:a かとは思いましたが、結論の「円上にあること」 に結び付けられません! お力をお貸し下さい!

  • 相似な三角形の面積比

    二つの三角形ABCとDEFがあり、それらは相似です。 AB:EF、DE:BCがわかっているとき、△ABC:△DEFの求め方を 教えて下さい。お願いします。

  • 三角形の決定

    『△ABCにおいて、a・sinA=b・sinB ならば、どんな三角形かを答えなさい』という問題で、 正弦定理から、a・a/2R=b・b/2R よって、a=b(a>0、b>0) よって、点Cを頂点とする二等辺三角形となる・・・(答) と解法にあったのですが、a=bだけでは二等辺三角形とは言い切れないのではないでしょうか?正三角形の可能性もあると思うのですが。 よろしくお願いします。

  • 数学の証明問題

    今年度から高校生になるもので、宿題で困ってます。数学の問題で・・・ △ABCの∠B、∠Cの二等辺三角形が、辺AC,ABと交わる点をそれぞれD.Eとする。ED平行BCならば、△ABCは二等辺三角形であることを証明せよ。 という問題と、 △ABCの各頂点を通り、それぞれの向かい合う辺に平行な直線の交点を、P,Q,Rとする。△ABCの各頂点から向かい合う辺に下ろした3本の垂線AD,BE,CFは、△PQRの外心で交わることを証明せよ。 という問題がどうしてもわかりません。 証明お願いします!!!

  • 三角形の面積比

    数学の問題なのですが、解き方が全くわかりません。 図が書けないので、説明しにくいですががんばってします。 三角形ABCがあります。ABは5センチでACは4センチです。頂点Aから∠Aを二等に分ける線(すみません、名前忘れてしまいました)が引いてありBCでの交点をDとします。ΔABD:ΔACDを求めよ。 という問題です。図を見た限り、絶対に二つの三角形は相似ではないと思いますが、確定ではありません。 僕が今一番知りたいことは、相似ではない二つの三角形の面積の比の求め方です。 誰か教えてください。よろしくお願いします。

  • 三角形の形状

    『三角形ABCにおいて、等式sinA=2cosBsinCが成り立つとき、この三角形はどのような形をしているか。』という問題がありました。 正弦定理と余弦定理から辺の関係に直し、 a^2=c^2+a^2-b^2 b^2=c^2 よって、b=c まではできたのですが、これ以上先に進めませんでした。 解答を見たら、この時点で“b=cの二等辺三角形”と最終的な答えにしていました。僕はa=b=cの正三角形の場合もあるだろうから、“b=cの二等辺三角形”は最終解答にはできないと考えていました。正三角形が二等辺三角形に含まれるのはわかりますが、この問題では三角形の形状を訊いているわけですから、a=b=cなのかa≠b=cなのかははっきり区別すべきではないでしょうか? 宜しくお願いします。