• ベストアンサー
  • 困ってます

数学です

証明問題でどうしてもわからない問題があるので教えてください (10)鋭角三角形ABCの重心をGとする。BGと辺ACの交点をD、 CGと辺ABの交点をEとするとき、BD=CEならばAB=ACであることを証明せよ。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

中線定理(url参照)を使います。 Gは重心であるのでE,Dは各々AB,ACの中点です。 よって2AD=AC,2AE=AB    (0) 中線定理より 2(BD^2+AD^2)=AB^2+BC^2 (1) 2(CE^2+AE^2)=AC^2+BC^2 (2) (1)-(2)を作るとBD=CEなので 2(AD^2-AE^2)=AB^2-AC^2 2(AC^2/4-AB^2/4)=(AC^2-AB^2)/2=AB^2-AC^2 よって AB=AC

参考URL:
http://www.weblio.jp/content/%E4%B8%AD%E7%B7%9A%E5%AE%9A%E7%90%86

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1
  • yyssaa
  • ベストアンサー率50% (747/1465)

>重心は中線を2:1の比で分割するので、 BD=CEならばBG=CGかつEG=DGで∠BGE=∠CGD から△BGE≡△CGDとなりBE=CD。 BE=AB/2、CD=AC/2 よってAB=AC(証明終わり)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 図形の証明問題です。

    どなたか回答おねがいします。 △ABCは鋭角三角形とする。∠ABCの二等分線と辺ACとの交点をDとし、Dから辺BCに垂線をひき、その交点をEとする。Eから辺ABに垂線をひき、BD,ABとの交点をそれぞれF,Gとする、このときED=EFであることを証明せよ です。おねがいします。

  • 数学の証明問題について

    数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m

  • シュタイナー・レームスの定理

    △ABCの ∠Bの角の2等分線とACの交点をD, ∠Cの角の2等分線とABの交点をE |BD|=|CE| とすると △ABCは2等辺3角形になる というのが 「 シュタイナー・レームスの定理 」 というのだそうですが BDとCEの交点をOとすると 「|BD|=|CE|」という条件が無くとも Oは内心だとはいえますが Oは重心だとなぜいえるのでしょうか? 「|BD|=|CE|」という条件抜きには 重心だといえないと思いますので この定理の正しい証明をお願いします

  • 証明問題がわかりません

    証明問題がわかりません AB=AC の二等辺三角形ABCがあります。 AC上に点Dが、AB上に点Eがあり BD=CE である。 また BDとCEの交点をFとする このとき 三角形BCF が二等辺三角形であることを証明せよ。

  • 数学I 三角比の問題

    基本的な問題ばかりですが回答が手元になくて困っています。多いですがよろしくお願い致します。 1.△ABCの外接円をOとする。円Oの点Aでの接線をlとし、l上の点DをBDとACが平行になるようにとる。さらに AB=3 , AC=4 , AD=15/4とする。 (1)△ABCと△BDAが相似になることを示せ。 (2)BCを求めよ。 (3)円Oの半径を求めよ 2.四角形ABCDは∠D=120°, AB=BC=CA=3を満たす。対角線AC,BDの交点をPとする。 (1)この四角形は円に内接することを示せ。 (2)∠ADBを求めよ。 (3)PB:PD=2のとき、PAを求めよ。 3.△ABCでABの中点をD、ACの中点をEとし、BEとCDの交点をGとする。次のことを証明せよ。 (1)△ABCと△ADEは相似 (2)△DEGと△CBGは相似 (3)BG:GE=2:1 4.△ABCでAB上に点Dがあり、AD=AC=BC=1 , BD=CDとする。 (1)△ABCと△BCDが相似なことを証明せよ。 (2) x = BDを求めよ。 5.△ABCで∠Aの二等分線とBCの交点をDとする。また、Cを通るABに平行な直線と∠Aの二等分線との交点をEとする。 (1)△ABDと△ECDが相似なことを証明せよ。 (2)AB:BD=AC:CDを証明せよ。

  • 数学の

    今学校の課題をしているのですがどうしても解けない問題があり、どなたかわかる方がいましたら是非解いていただきたく投稿しました(;_;) どなたかわかる方、よろしくお願いします(TT) 1、平行四辺形ABCDにおいて、ABの中点をE、CEとBDの交点をFとするとき、△FEBs△FCDを証明せよ 2、AB=AC=1の二等辺三角形ABCにおいて、辺BC上の点Dが、DA=DB、CA=CDを満たしている。△ABCs△DABであることを用いて、BDの長さを求めよ。更に Bを求めよ。 です(;_;) すみません、解る方よろしくお願い致します(;_;)

  • 数学を教えてください。

    先ほど質問させていただいた者です。また同じようなことから投稿させていただきました。基本的な問題ですが、ご解答よろしくお願いします。 △ABCで∠Aの2等分線とBCの交点をDとする。また、Cを通るABに平行な直線と∠Aの2等分線との交点をEとする。 1、△ABDと△ECDが相似であることを証明せよ。 2、AB:BD=AC:CDを証明せよ。 以上です。 自分の答えです。 1、AB//CEであるため  錯角により∠BAE=CEA  同じく∠ABC=∠BCEとなる。  三角形の相似条件(2つの角が等しい)ことから  △ABDと△ECDは相似である。 2、△ABDと△ECDは相似であることから   AB:BD=EC:CDとなる。   次にAB//CEのため錯角により∠CAE=∠CEA   ∠Aには二等分線が引かれているため、∠CEA=∠CAEと   なることから△ACEは二等辺三角形である。   ∴EC=ACとなるのでAB:BD=AC:CDとなる。 考え方はあっているのでしょうか?また自分が出した答えは数学の証明になっているのでしょうか?…正しい証明のしかたを教えてください。 よろしくお願いします。

  • 平面幾何

    △ABCの辺AB,ACの中点をそれぞれD,Eとし、辺BE、CDの交点をGとする。 4点D,B,C,Eが同一円周上にあるとき、以下のことを証明せよ。 (1)AB=AC (2)2∠ABG=∠BAEのとき∠BAG=∠ABG (3)(2)の条件を満たすとき△ABCは正三角形である この問題を解いているのですが、 (1)でAB=ACを示すことはBD=CEを示すことで、△BCDと△CBEが合同であることを利用して証明してみました (2)からがわからなくて困っています。 △ABGが二等辺三角形であることを示すのでしょうか?もしそうだとした場合どのように示せばいいのでしょうか? 回答いただければ幸いです。よろしくお願いします

  • 数学について教えてください。

    ∠BACが鋭角で、AB=3、BC=7、sinC=3√3/14である△ABCがある。 ・△ABCの外接円の点Bを含まない弧AC上に、BD=CDを満たすような点DをとるとADはいくらか。 ・線分ACと線分BDの交点をEとするとBEはいくらか。 解き方から分からず悩んでいます。 分かりやすく教えていただければと思います。

  • 数学I.Aセンター過去問題

    △ABCにおいて、AB=AC=3、BC=2であるとき、内接円Iに点Eと点Fを3点C、E、Fが一直線上にこの順に並びかつCF=√2となるようにとる。 このとき、CE、EF/CEを求めよ。 さらに、円Iと辺BCとの接点をD、線分BEと線分DFとの交点をG、線分CGの延長と線分BFとの交点をMとする。 このとき、GM/CGを求めよ。 この問題の回答、解説をお願いします。