• ベストアンサー
  • 困ってます

漸化式(?)数直線の2点

「数直線上に相異なる2点A1、B1(A1<B1)をとる。An、Bnを帰納的に次のように定める。 nが偶数のとき、An=1/2(An-1+Bn-1)、Bn=Bn-1 nが奇数のとき、An=An-1、Bn=1/2(An-1+Bn-1) mが偶数のとき、一般項Am、Bmを求めよ。」 この問題なのですが、nが偶数のときを考えてるとn-1というのが奇数となったり、その反対が起こったりするのですが、nが偶数のときの式と奇数のときの式を一緒に使っていいのでしょうか?またどのように一般項を求めていけばいいのでしょうか? アドバイスやヒントをよろしくお願いします

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

数列は通常A_n,B_nと表記します。 >nが偶数のときの式と奇数のときの式を一緒に使っていいのでしょうか? かまいませんよ。 以下、説明を。 nが偶数なら、n-1は奇数です。 よって、A_(n-1)=A_(n-2)、B_(n-1)=(1/2){A_(n-2)+B_(n-2)}と書くことが出来ます。 もちろん、nは偶数ですから A_n=(1/2){A_(n-1)+B_(n-1)}、B_n=B_(n-1) これでA_n,B_nとA_(n-2),B_(n-2)との関係が求まりました。 詳細な解答を書くと削除されそうなので、この程度のヒントにとどめておきます。 頑張ってA_n,B_nの一般項を求めてください。

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1

これはnを遇奇で分けてときます。 結構オーソドックスな問題ですねぇ。。。 私もこの問題解いたことあります。 >アドバイスやヒントをよろしくお願いします とありますが・・・ やっぱりマナー違反に当たる気がします。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 数学 漸化式 応用

    問題1:数列{an}がa1=1,a2=2,a(n+2)=-a(n+1)+2an(n=1,2,3,…)で定められるとき,次の問いに答えよ。 (1)bn=a(n+1)-an(n=1,2,3,…)とするとき,b(n+1)をbnを用いて表せ。 (2)(3)は(1)が解けたらたぶん解けるので(1)を教えて下さい^^ 問題2:数列{an},{bn}がa1=1,b1=3,a(n+1)=2an+bn,b(n+1)=an+2bnで定められている。このとき{an+bn}の一般項と,{an-bn}の一般項を求めよ。またこれらの結果より,{an}の一般項,{bn}の一般項を求めよ。 よろしくお願いします。 全然ぃぃアイデアが思い浮かびません^^; 普通の漸化式と違っていて… 何をいっているのかもわかりません。 お願いします。

  • 数学の問題の解説お願いします。

    シニア数学演習 317 自然数nに対して、正の整数an,bnを(3+√2)^n=an+bn√2によって定める。 (1)a1,b1とa2,b2を求めよ。 (2)an+1,bn+1をan,bnを用いて表せ。 (3)nが奇数のとき、an,bnはともに奇数であって、   nが偶数のとき、anは奇数で、bnは偶数であることを数学的帰納法によって示せ。 解答 (1)a1=3,b1=1,a2=11,b2=6 (2)an+1=3an+2bn,bn+1=an+3bn (3)(1)kara,n=1,2のとき命題は成り立つ。   n=2k-1,2kのとき a2k-1=2h-1,b2k-1=2i-1,a2k=2j-1,b2k=2l (h,i,j,lは自然数)であるとして、   a2k+1,b2k+1,a2(k+1),b2(k+1)の偶数を調べる。 数学的帰納法の箇所を詳しく、 解説していただけると幸いです。 よろしくお願いします。

  • 漸化式

    漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 数列{an},{bn}は次のように定められている

    数列{an},{bn}は次のように定められている 1 ,a(1)=0,b(1)=1 2 nが偶数のとき、an=1/2(a(n-1)+b(n-1)),bn=b(n-1) 3 nが奇数のとき、(ただし、n≧3) an=a(n-1),bn=1/2(a(n-1)+b(n-1)) (1)an-bnをnの式で表せ (2)anをnの式で表せ。 どなたか教えていただけないでしょうか?

  • 漸化式の問題を教えてください・・・

    An+1、Bn+1、Anは それぞれAのn+1番目、Bのn+1番目、Aのn+1番目という意味です。(汗 数列{An}、{Bn}が A1=6 B1=1 An+1=An +3Bn Bn+1=2An +2Bn で定められている。 2An +3Bnをnであらわせ。 です。  An+1 + Bn+1 =3An + 5Bn なので 2An + 3Bnを導けません…。ほかに方法があるのでしょうか? 解説お願いします。

  • 漸化式を用いた場合の数

    赤、青、黄の3色を用いて、横一列のn個のマスを隣り合うマスは異なる色になるようにする。使わない色があってもよい。両端が同じ色の場合の数をanとし、両端の色がことなるときをbnとする。 an、bnをnで表せ。 漸化式を作って、それから一般項を求めるのだということは、わかるが、いざ漸化式を作るとなるとどう考えたらよいのか、分かりません。 よろしくお願いします。

  • 漸化式

    数列{an}はa1=1 an+1=an/1+3anを満たす。bn=1/anとおくとbn+1=bn+ア であるから、an=1/イn-ウである。 この問題の解き方、解説をお願いします。 答えは an=1/3n-2となるようです。

  • どなたかこの数学の問題をお教えください。

    数列{An}、{Bn}を次のように定義する。 A1=0、B1=1とし、 (1)nが偶数のとき、An=(1/2){A(n-1)+B(n-1)}、 Bn=B(n-1) (2)nが奇数のとき(ただし、n≧3)、An=A(n-1)、 Bn=1/2{A(n-1)+B(n-1)} とする。(1)An-Bnを求めよ。(2)Anを求めよ。 という問題です。(1)は1/2^nという解答を導くことができたのですが、一方で(2)はAn-Bnをnで表して(1)と連立させるのかと思ったのですが、うまくいきません。偶数奇数 で場合分けするのかなとも思ったのですが、 シックリ来ません。どなたか解き方をお教えく ださい。お願いします。

  • 漸化式?

    数列{An}をA1=P(P>0),An+1(n+1はAの右下にある)  An^2+2 =―――― (n=1、2・・・)で定める。  2An+1        An-1 (1)Bn=――― と置くとき、Bn+1をBnで表せ      An+2 この問題が分かりません。たぶん漸化式だと思うのですが、2乗の漸化式などやったことがないので分かりません。よろしくお願いします。